高催化转化动力学的CoSe QDs/Sn3O4 PCNFs高效锂硫电池

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-04 DOI:10.1016/j.jcis.2024.12.007
Xiaoke Luo, Di Wang, Shiyi Liu, Hailong Yan, Jinbing Cheng, Yang Lu, Deyang Zhang, Huan Pang
{"title":"高催化转化动力学的CoSe QDs/Sn3O4 PCNFs高效锂硫电池","authors":"Xiaoke Luo, Di Wang, Shiyi Liu, Hailong Yan, Jinbing Cheng, Yang Lu, Deyang Zhang, Huan Pang","doi":"10.1016/j.jcis.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn<sub>3</sub>O<sub>4</sub> nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g<sup>-1</sup> at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61  mg cm<sup>-2</sup> and a low electrolyte to sulfur ratio of approximately 4.6 μL mg<sup>-1</sup>, the CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g<sup>-1</sup> at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"884-893"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> PCNFs with high catalytic conversion kinetics towards high-efficiency Li-S batteries.\",\"authors\":\"Xiaoke Luo, Di Wang, Shiyi Liu, Hailong Yan, Jinbing Cheng, Yang Lu, Deyang Zhang, Huan Pang\",\"doi\":\"10.1016/j.jcis.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn<sub>3</sub>O<sub>4</sub> nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g<sup>-1</sup> at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61  mg cm<sup>-2</sup> and a low electrolyte to sulfur ratio of approximately 4.6 μL mg<sup>-1</sup>, the CoSe QDs/Sn<sub>3</sub>O<sub>4</sub> PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g<sup>-1</sup> at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"682 \",\"pages\":\"884-893\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池正极发生的氧化还原反应涉及几个关键的电催化过程,这些过程对电化学储能系统的整体性能有重要影响。本研究提出了一种由CoSe量子点(QDs)与Sn3O4纳米片集成而成的非均相催化复合材料,该材料提高了阴极内整体离子电导率和活性位点的可及性。这种受控的迁移有效地捕获了阴极内的多硫化物,减少了它们在电解质中的溶解,减轻了穿梭效应。采用CoSe QDs/Sn3O4多孔碳纳米纤维(PCNFs)的Li-S电池在0.1 C下具有1596.9 mAh g-1的高放电容量,以及出色的循环稳定性,在2 C下可实现1500次循环,每次循环的最小容量衰减为0.024%。即使在高硫加载条件下的8.61毫克cm-2电解液和低硫比约为4.6μL mg-1,量子点聊天/ Sn3O4 PCNFs阴极提供一个初始discharge-specific容量732.0 mAh g - 1在0.2级c。通过这种方法,我们完成了量子点尺寸控制和均匀分布的谈心,和这种方法可以扩展到其他金属氧化物的合成量子点和金属硫化物,提供一个新奇的想法在聚硫催化量子点的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoSe QDs/Sn3O4 PCNFs with high catalytic conversion kinetics towards high-efficiency Li-S batteries.

The redox reactions occurring at positive electrode of the lithium-sulfur (Li-S) batteries involve several key electrocatalytic processes that significantly impact the overall performance of the electrochemical energy storage system. This study presents a heterogeneous catalytic composite material composed of CoSe quantum dots (QDs) integrated with Sn3O4 nanosheets, which enhances the overall ionic conductivity and accessibility of active sites within the cathode. This controlled migration effectively traps polysulfides within the cathode, reducing their dissolution into the electrolyte and mitigating the shuttle effect. Li-S batteries incorporating CoSe QDs/Sn3O4 porous carbon nanofibers (PCNFs) demonstrate a high discharge capacity of 1596.9 mAh g-1 at 0.1 C, along with remarkable cycling stability, achieving 1500 cycles at 2 C with a minimal capacity decay of 0.024 % per cycle. Even under a high sulfur loading conditions of 8.61  mg cm-2 and a low electrolyte to sulfur ratio of approximately 4.6 μL mg-1, the CoSe QDs/Sn3O4 PCNFs cathode delivers an initial discharge-specific capacity of 732.0 mAh g-1 at 0.2 C. Through this method, we accomplished the size control and uniform distribution of CoSe QDs, and this method can be extended to the synthesis of other metal oxide and metal sulfide QDs, offering a novel idea for the application of QDs in polysulfide catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信