Yulin Zhang, Derui Song, Peng Yao, Xiao-Hua Zhang, Jiwen Liu
{"title":"时间衰减模式与不规则扰动:沿海动态海水中丰富与稀少微生物群落的对比作用。","authors":"Yulin Zhang, Derui Song, Peng Yao, Xiao-Hua Zhang, Jiwen Liu","doi":"10.1128/aem.01751-24","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities in coastal seas experience strong environmental disturbances, yet their response patterns, especially regarding differently abundant subcommunities, remain poorly understood. Here, through 16S rRNA gene amplicon sequencing, we investigated the diversity, time-decay pattern, and assembly process of abundant, conditionally rare taxa (CRT) and rare microbial subcommunities in temperate coastal waters over 60 consecutive weeks. The abundant (50.9%) and CRT (46.1%) communities each comprised approximately half of the planktonic community, while the CRT and rare communities contributed to the extremely high species diversity. Distinct temporal heterogeneity was observed among the three fractions and was associated with taxonomic level. The abundant subcommunity exhibited time-decay patterns at all taxonomic levels, while for CRT, the pattern was found only at finer levels. In contrast, variations of the rare community loosely followed a temporal rhythm and were largely confined within a specific taxonomic range, likely raised from turnovers among closely related taxa. Determinism dominated the community assembly of the abundant fraction, while the rare one was more controlled by stochasticity that may be related to pulse terrigenous inputs and anthropogenic disturbances. The rare subcommunity with narrow niche widths likely represented a stable repository to offer episodic specialists, while the abundant taxa that exhibited broader niche widths were considered the generalists in fluctuating environments. Our study revealed the distinct strategies that abundant and rare communities adopt to maintain community stability in temporal dynamics of prokaryotic plankton in the coastal seawater.</p><p><strong>Importance: </strong>The relative importance of rare and abundant taxa in microbial temporal patterns remains debated. Here, we identified taxonomically associated distinct diversity modes of abundant and rare subcommunities from a year-round time-series study in dynamic coastal seawater. We highlighted the significance of the rare subcommunity in maintaining community stability by serving as a repository to offer specialists driven by stochastic processes over time. The abundant subcommunity, by contrast, contributed mainly to temporal rhythmic variations. This study expands the current understanding of the temporal dynamics and stability of coastal microbial communities by revealing distinct variation patterns of subcommunities with different abundances.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0175124"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784082/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-decay patterns and irregular disturbance: contrasting roles of abundant and rare microbial communities in dynamic coastal seawater.\",\"authors\":\"Yulin Zhang, Derui Song, Peng Yao, Xiao-Hua Zhang, Jiwen Liu\",\"doi\":\"10.1128/aem.01751-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial communities in coastal seas experience strong environmental disturbances, yet their response patterns, especially regarding differently abundant subcommunities, remain poorly understood. Here, through 16S rRNA gene amplicon sequencing, we investigated the diversity, time-decay pattern, and assembly process of abundant, conditionally rare taxa (CRT) and rare microbial subcommunities in temperate coastal waters over 60 consecutive weeks. The abundant (50.9%) and CRT (46.1%) communities each comprised approximately half of the planktonic community, while the CRT and rare communities contributed to the extremely high species diversity. Distinct temporal heterogeneity was observed among the three fractions and was associated with taxonomic level. The abundant subcommunity exhibited time-decay patterns at all taxonomic levels, while for CRT, the pattern was found only at finer levels. In contrast, variations of the rare community loosely followed a temporal rhythm and were largely confined within a specific taxonomic range, likely raised from turnovers among closely related taxa. Determinism dominated the community assembly of the abundant fraction, while the rare one was more controlled by stochasticity that may be related to pulse terrigenous inputs and anthropogenic disturbances. The rare subcommunity with narrow niche widths likely represented a stable repository to offer episodic specialists, while the abundant taxa that exhibited broader niche widths were considered the generalists in fluctuating environments. Our study revealed the distinct strategies that abundant and rare communities adopt to maintain community stability in temporal dynamics of prokaryotic plankton in the coastal seawater.</p><p><strong>Importance: </strong>The relative importance of rare and abundant taxa in microbial temporal patterns remains debated. Here, we identified taxonomically associated distinct diversity modes of abundant and rare subcommunities from a year-round time-series study in dynamic coastal seawater. We highlighted the significance of the rare subcommunity in maintaining community stability by serving as a repository to offer specialists driven by stochastic processes over time. The abundant subcommunity, by contrast, contributed mainly to temporal rhythmic variations. This study expands the current understanding of the temporal dynamics and stability of coastal microbial communities by revealing distinct variation patterns of subcommunities with different abundances.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0175124\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784082/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.01751-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01751-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Time-decay patterns and irregular disturbance: contrasting roles of abundant and rare microbial communities in dynamic coastal seawater.
Microbial communities in coastal seas experience strong environmental disturbances, yet their response patterns, especially regarding differently abundant subcommunities, remain poorly understood. Here, through 16S rRNA gene amplicon sequencing, we investigated the diversity, time-decay pattern, and assembly process of abundant, conditionally rare taxa (CRT) and rare microbial subcommunities in temperate coastal waters over 60 consecutive weeks. The abundant (50.9%) and CRT (46.1%) communities each comprised approximately half of the planktonic community, while the CRT and rare communities contributed to the extremely high species diversity. Distinct temporal heterogeneity was observed among the three fractions and was associated with taxonomic level. The abundant subcommunity exhibited time-decay patterns at all taxonomic levels, while for CRT, the pattern was found only at finer levels. In contrast, variations of the rare community loosely followed a temporal rhythm and were largely confined within a specific taxonomic range, likely raised from turnovers among closely related taxa. Determinism dominated the community assembly of the abundant fraction, while the rare one was more controlled by stochasticity that may be related to pulse terrigenous inputs and anthropogenic disturbances. The rare subcommunity with narrow niche widths likely represented a stable repository to offer episodic specialists, while the abundant taxa that exhibited broader niche widths were considered the generalists in fluctuating environments. Our study revealed the distinct strategies that abundant and rare communities adopt to maintain community stability in temporal dynamics of prokaryotic plankton in the coastal seawater.
Importance: The relative importance of rare and abundant taxa in microbial temporal patterns remains debated. Here, we identified taxonomically associated distinct diversity modes of abundant and rare subcommunities from a year-round time-series study in dynamic coastal seawater. We highlighted the significance of the rare subcommunity in maintaining community stability by serving as a repository to offer specialists driven by stochastic processes over time. The abundant subcommunity, by contrast, contributed mainly to temporal rhythmic variations. This study expands the current understanding of the temporal dynamics and stability of coastal microbial communities by revealing distinct variation patterns of subcommunities with different abundances.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.