Ashley D Bernstein, Gertrude A Asante Ampadu, Yanxing Yang, Gobin Raj Acharya, Thomas M Osborn Popp, Andrew J Nieuwkoop
{"title":"Effects of Ca<sup>2+</sup> on the Structure and Dynamics of PIP<sub>3</sub> in Model Membranes Containing PC and PS.","authors":"Ashley D Bernstein, Gertrude A Asante Ampadu, Yanxing Yang, Gobin Raj Acharya, Thomas M Osborn Popp, Andrew J Nieuwkoop","doi":"10.1021/acs.biochem.4c00513","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes, such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here, we investigate the structure and dynamics of PIP<sub>3</sub> in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca<sup>2+</sup> by using full-length lipids in well-formed bilayers. We used solution and solid-state NMR on naturally abundant <sup>1</sup>H, <sup>31</sup>P, and <sup>13</sup>C atoms combined with molecular dynamics (MD) simulations to characterize the structure and dynamics of PIPs. <sup>1</sup>H and <sup>31</sup>P 1D spectra show good resolution at temperatures above the phase transition with isolated peaks in the headgroup, interfacial, and bilayer regions. Site-specific assignment of the chemical shifts of these reporters enables the measurement of the effects of Ca<sup>2+</sup> and PS at the single atom level. In particular, the resolved <sup>31</sup>P signals of the PIP<sub>3</sub> headgroup allow for extremely well-localized information about PIP<sub>3</sub> phosphate dynamics, which the MD simulations can further explain. A quantitative assessment of cross-polarization kinetics provides additional dynamics measurements for the PIP<sub>3</sub> headgroups.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00513","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of Ca2+ on the Structure and Dynamics of PIP3 in Model Membranes Containing PC and PS.
Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes, such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here, we investigate the structure and dynamics of PIP3 in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca2+ by using full-length lipids in well-formed bilayers. We used solution and solid-state NMR on naturally abundant 1H, 31P, and 13C atoms combined with molecular dynamics (MD) simulations to characterize the structure and dynamics of PIPs. 1H and 31P 1D spectra show good resolution at temperatures above the phase transition with isolated peaks in the headgroup, interfacial, and bilayer regions. Site-specific assignment of the chemical shifts of these reporters enables the measurement of the effects of Ca2+ and PS at the single atom level. In particular, the resolved 31P signals of the PIP3 headgroup allow for extremely well-localized information about PIP3 phosphate dynamics, which the MD simulations can further explain. A quantitative assessment of cross-polarization kinetics provides additional dynamics measurements for the PIP3 headgroups.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.