若干主环面束上的广义复结构

IF 0.6 3区 数学 Q3 MATHEMATICS
Debjit Pal, Mainak Poddar
{"title":"若干主环面束上的广义复结构","authors":"Debjit Pal,&nbsp;Mainak Poddar","doi":"10.1007/s10455-024-09982-9","DOIUrl":null,"url":null,"abstract":"<div><p>A principal torus bundle over a complex manifold with even dimensional fiber and characteristic class of type (1, 1) admits a family of regular generalized complex structures (GCS) with the fibers as leaves of the associated symplectic foliation. We show that such a generalized complex structure is equivalent to the product of the complex structure on the base and the symplectic structure on the fiber in a tubular neighborhood of an arbitrary fiber if and only if the bundle is flat. This has consequences for the generalized Dolbeault cohomology of the bundle that includes a Künneth formula. On a more general note, if a principal bundle over a complex manifold with a symplectic structure group admits a GCS with the fibers of the bundle as leaves of the associated symplectic foliation, and the GCS is equivalent to a product GCS in a neighborhood of every fiber, then the bundle is flat and symplectic.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized complex structure on certain principal torus bundles\",\"authors\":\"Debjit Pal,&nbsp;Mainak Poddar\",\"doi\":\"10.1007/s10455-024-09982-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A principal torus bundle over a complex manifold with even dimensional fiber and characteristic class of type (1, 1) admits a family of regular generalized complex structures (GCS) with the fibers as leaves of the associated symplectic foliation. We show that such a generalized complex structure is equivalent to the product of the complex structure on the base and the symplectic structure on the fiber in a tubular neighborhood of an arbitrary fiber if and only if the bundle is flat. This has consequences for the generalized Dolbeault cohomology of the bundle that includes a Künneth formula. On a more general note, if a principal bundle over a complex manifold with a symplectic structure group admits a GCS with the fibers of the bundle as leaves of the associated symplectic foliation, and the GCS is equivalent to a product GCS in a neighborhood of every fiber, then the bundle is flat and symplectic.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-024-09982-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09982-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

具有偶数维纤维和类型为(1,1)的特征类的复流形上的主环面束允许一组正则广义复结构(GCS),其纤维是相关辛叶理的叶。我们证明了这种广义复合结构等价于任意纤维的管状邻域内基上的复合结构与纤维上的辛结构的乘积,当且仅当束是平的。这对包含k第n次公式的束的广义Dolbeault上同调有影响。在更一般的情况下,如果具有辛结构群的复流形上的主束允许一个以束的纤维为相关辛叶理的叶的GCS,并且GCS等价于每个纤维的邻域中的积GCS,则该束是平的和辛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized complex structure on certain principal torus bundles

A principal torus bundle over a complex manifold with even dimensional fiber and characteristic class of type (1, 1) admits a family of regular generalized complex structures (GCS) with the fibers as leaves of the associated symplectic foliation. We show that such a generalized complex structure is equivalent to the product of the complex structure on the base and the symplectic structure on the fiber in a tubular neighborhood of an arbitrary fiber if and only if the bundle is flat. This has consequences for the generalized Dolbeault cohomology of the bundle that includes a Künneth formula. On a more general note, if a principal bundle over a complex manifold with a symplectic structure group admits a GCS with the fibers of the bundle as leaves of the associated symplectic foliation, and the GCS is equivalent to a product GCS in a neighborhood of every fiber, then the bundle is flat and symplectic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信