{"title":"COCSN:用于数据中心的多层级联光路交换网络","authors":"Shuo Li;Huaxi Gu;Xiaoshan Yu;Hua Huang;Songyan Wang;Zeshan Chang","doi":"10.1109/TCC.2024.3488275","DOIUrl":null,"url":null,"abstract":"A cascaded network represents a classic scaling-out model in traditional electrical switching networks. Recent proposals have integrated optical circuit switching at specific tiers of these networks to reduce power consumption and enhance topological flexibility. Utilizing a multi-tiered cascaded optical circuit switching network is expected to extend the advantages of optical circuit switching further. The main challenges fall into two categories. First, an architecture with sufficient connectivity is required to support varying workloads. Second, the network reconfiguration is more complex and necessitates a low-complexity scheduling algorithm. In this work, we propose COCSN, a multi-tiered cascaded optical circuit switching network architecture for data center. COCSN employs wavelength-selective switches that integrate multiple wavelengths to enhance network connectivity. We formulate a mathematical model covering lightpath establishment, network reconfiguration, and reconfiguration goals, and propose theorems to optimize the model. Based on the theorems, we introduce an over-subscription-supported wavelength-by-wavelength scheduling algorithm, facilitating agile establishment of lightpaths in COCSN tailored to communication demand. This algorithm effectively addresses scheduling complexities and mitigates the issue of lengthy WSS configuration times. Simulation studies investigate the impact of flow length, WSS reconfiguration time, and communication domain on COCSN, verifying its significantly lower complexity and superior performance over classical cascaded networks.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1463-1475"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center\",\"authors\":\"Shuo Li;Huaxi Gu;Xiaoshan Yu;Hua Huang;Songyan Wang;Zeshan Chang\",\"doi\":\"10.1109/TCC.2024.3488275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cascaded network represents a classic scaling-out model in traditional electrical switching networks. Recent proposals have integrated optical circuit switching at specific tiers of these networks to reduce power consumption and enhance topological flexibility. Utilizing a multi-tiered cascaded optical circuit switching network is expected to extend the advantages of optical circuit switching further. The main challenges fall into two categories. First, an architecture with sufficient connectivity is required to support varying workloads. Second, the network reconfiguration is more complex and necessitates a low-complexity scheduling algorithm. In this work, we propose COCSN, a multi-tiered cascaded optical circuit switching network architecture for data center. COCSN employs wavelength-selective switches that integrate multiple wavelengths to enhance network connectivity. We formulate a mathematical model covering lightpath establishment, network reconfiguration, and reconfiguration goals, and propose theorems to optimize the model. Based on the theorems, we introduce an over-subscription-supported wavelength-by-wavelength scheduling algorithm, facilitating agile establishment of lightpaths in COCSN tailored to communication demand. This algorithm effectively addresses scheduling complexities and mitigates the issue of lengthy WSS configuration times. Simulation studies investigate the impact of flow length, WSS reconfiguration time, and communication domain on COCSN, verifying its significantly lower complexity and superior performance over classical cascaded networks.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 4\",\"pages\":\"1463-1475\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750340/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750340/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center
A cascaded network represents a classic scaling-out model in traditional electrical switching networks. Recent proposals have integrated optical circuit switching at specific tiers of these networks to reduce power consumption and enhance topological flexibility. Utilizing a multi-tiered cascaded optical circuit switching network is expected to extend the advantages of optical circuit switching further. The main challenges fall into two categories. First, an architecture with sufficient connectivity is required to support varying workloads. Second, the network reconfiguration is more complex and necessitates a low-complexity scheduling algorithm. In this work, we propose COCSN, a multi-tiered cascaded optical circuit switching network architecture for data center. COCSN employs wavelength-selective switches that integrate multiple wavelengths to enhance network connectivity. We formulate a mathematical model covering lightpath establishment, network reconfiguration, and reconfiguration goals, and propose theorems to optimize the model. Based on the theorems, we introduce an over-subscription-supported wavelength-by-wavelength scheduling algorithm, facilitating agile establishment of lightpaths in COCSN tailored to communication demand. This algorithm effectively addresses scheduling complexities and mitigates the issue of lengthy WSS configuration times. Simulation studies investigate the impact of flow length, WSS reconfiguration time, and communication domain on COCSN, verifying its significantly lower complexity and superior performance over classical cascaded networks.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.