基于关键点的新型大序列挖掘 MLCS 算法

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanni Li;Bing Liu;Tihua Duan;Zhi Wang;Hui Li;Jiangtao Cui
{"title":"基于关键点的新型大序列挖掘 MLCS 算法","authors":"Yanni Li;Bing Liu;Tihua Duan;Zhi Wang;Hui Li;Jiangtao Cui","doi":"10.1109/TKDE.2024.3485234","DOIUrl":null,"url":null,"abstract":"Mining multiple longest common subsequences (\n<i>MLCS</i>\n) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length \n<inline-formula><tex-math>$\\geqslant$</tex-math></inline-formula>\n 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of \n<i>MLCS</i>\n mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model \n<i>MLCS-DAG</i>\n (\n<u>D</u>\nirected \n<u>A</u>\ncyclic \n<u>G</u>\nraph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of \n<i>MLCS</i>\n, which are the points that do not contribute to their \n<i>MLCS</i>\ns mining in the \n<i>MLCS-DAG</i>\n. It then proposes a new \n<i>MLCS</i>\n problem-solving graph model, namely \n<inline-formula><tex-math>$DAG_{KP}$</tex-math></inline-formula>\n (a new \n<i>MLCS-<u>DAG</u></i>\n containing only \n<u>K</u>\ney \n<u>P</u>\noints). A novel parallel \n<i>MLCS</i>\n algorithm, called \n<i>KP-MLCS</i>\n (\n<u>K</u>\ney \n<u>P</u>\noint based \n<i><u>MLCS</u></i>\n), is also presented, which can mine and compress all \n<i>MLCS</i>\ns of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm \n<i>KP-MLCS</i>\n drastically outperforms the existing state-of-the-art \n<i>MLCS</i>\n algorithms in terms of both efficiency and effectiveness.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"15-28"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Key Point Based MLCS Algorithm for Big Sequences Mining\",\"authors\":\"Yanni Li;Bing Liu;Tihua Duan;Zhi Wang;Hui Li;Jiangtao Cui\",\"doi\":\"10.1109/TKDE.2024.3485234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining multiple longest common subsequences (\\n<i>MLCS</i>\\n) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length \\n<inline-formula><tex-math>$\\\\geqslant$</tex-math></inline-formula>\\n 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of \\n<i>MLCS</i>\\n mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model \\n<i>MLCS-DAG</i>\\n (\\n<u>D</u>\\nirected \\n<u>A</u>\\ncyclic \\n<u>G</u>\\nraph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of \\n<i>MLCS</i>\\n, which are the points that do not contribute to their \\n<i>MLCS</i>\\ns mining in the \\n<i>MLCS-DAG</i>\\n. It then proposes a new \\n<i>MLCS</i>\\n problem-solving graph model, namely \\n<inline-formula><tex-math>$DAG_{KP}$</tex-math></inline-formula>\\n (a new \\n<i>MLCS-<u>DAG</u></i>\\n containing only \\n<u>K</u>\\ney \\n<u>P</u>\\noints). A novel parallel \\n<i>MLCS</i>\\n algorithm, called \\n<i>KP-MLCS</i>\\n (\\n<u>K</u>\\ney \\n<u>P</u>\\noint based \\n<i><u>MLCS</u></i>\\n), is also presented, which can mine and compress all \\n<i>MLCS</i>\\ns of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm \\n<i>KP-MLCS</i>\\n drastically outperforms the existing state-of-the-art \\n<i>MLCS</i>\\n algorithms in terms of both efficiency and effectiveness.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 1\",\"pages\":\"15-28\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731910/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10731910/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Key Point Based MLCS Algorithm for Big Sequences Mining
Mining multiple longest common subsequences ( MLCS ) from a set of sequences of length three or more over a finite alphabet (a classical NP-hard problem) is an important task in many fields, e.g., bioinformatics, computational genomics, pattern recognition, information extraction, etc. Applications in these fields often involve generating very long sequences (length $\geqslant$ 10,000), referred to as big sequences. Despite efforts in improving the time and space complexities of MLCS mining algorithms, both existing exact and approximate algorithms face challenges in handling big sequences due to the overwhelming size of their problem-solving graph model MLCS-DAG ( D irected A cyclic G raph), leading to the issue of memory explosion or extremely high time complexity. To bridge the gap, this paper first proposes a new identification and deletion strategy for different classes of non-critical points in the mining of MLCS , which are the points that do not contribute to their MLCS s mining in the MLCS-DAG . It then proposes a new MLCS problem-solving graph model, namely $DAG_{KP}$ (a new MLCS-DAG containing only K ey P oints). A novel parallel MLCS algorithm, called KP-MLCS ( K ey P oint based MLCS ), is also presented, which can mine and compress all MLCS s of big sequences effectively and efficiently. Extensive experiments on both synthetic and real-world biological sequences show that the proposed algorithm KP-MLCS drastically outperforms the existing state-of-the-art MLCS algorithms in terms of both efficiency and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信