{"title":"针对地理分布式 Kubernetes 集群联盟的聚合监控","authors":"Chih-Kai Huang;Guillaume Pierre","doi":"10.1109/TCC.2024.3482574","DOIUrl":null,"url":null,"abstract":"Distributed monitoring is an essential functionality to allow large cluster federations to efficiently schedule applications on a set of available geo-distributed resources. However, periodically reporting the precise status of each available server is both unnecessary to allow accurate scheduling and unscalable when the number of servers grows. This paper proposes Acala, an aggregate monitoring framework for geo-distributed Kubernetes cluster federations which aims to provide the management cluster with aggregated information about the entire cluster instead of individual servers. Based on actual deployment under a controlled environment in the geo-distributed Grid’5000 testbed, our evaluations show that Acala reduces the cross-cluster network traffic by up to 97% and the scrape duration by up to 55% in the single member cluster experiment. Our solution also decreases cross-cluster network traffic by 95% and memory resource consumption by 83% in multiple member cluster scenarios. A comparison of scheduling efficiency with and without data aggregation shows that aggregation has minimal effects on the system’s scheduling function. These results indicate that our approach is superior to the existing solution and is suitable to handle large-scale geo-distributed Kubernetes cluster federation environments.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1449-1462"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations\",\"authors\":\"Chih-Kai Huang;Guillaume Pierre\",\"doi\":\"10.1109/TCC.2024.3482574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed monitoring is an essential functionality to allow large cluster federations to efficiently schedule applications on a set of available geo-distributed resources. However, periodically reporting the precise status of each available server is both unnecessary to allow accurate scheduling and unscalable when the number of servers grows. This paper proposes Acala, an aggregate monitoring framework for geo-distributed Kubernetes cluster federations which aims to provide the management cluster with aggregated information about the entire cluster instead of individual servers. Based on actual deployment under a controlled environment in the geo-distributed Grid’5000 testbed, our evaluations show that Acala reduces the cross-cluster network traffic by up to 97% and the scrape duration by up to 55% in the single member cluster experiment. Our solution also decreases cross-cluster network traffic by 95% and memory resource consumption by 83% in multiple member cluster scenarios. A comparison of scheduling efficiency with and without data aggregation shows that aggregation has minimal effects on the system’s scheduling function. These results indicate that our approach is superior to the existing solution and is suitable to handle large-scale geo-distributed Kubernetes cluster federation environments.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 4\",\"pages\":\"1449-1462\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720844/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720844/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations
Distributed monitoring is an essential functionality to allow large cluster federations to efficiently schedule applications on a set of available geo-distributed resources. However, periodically reporting the precise status of each available server is both unnecessary to allow accurate scheduling and unscalable when the number of servers grows. This paper proposes Acala, an aggregate monitoring framework for geo-distributed Kubernetes cluster federations which aims to provide the management cluster with aggregated information about the entire cluster instead of individual servers. Based on actual deployment under a controlled environment in the geo-distributed Grid’5000 testbed, our evaluations show that Acala reduces the cross-cluster network traffic by up to 97% and the scrape duration by up to 55% in the single member cluster experiment. Our solution also decreases cross-cluster network traffic by 95% and memory resource consumption by 83% in multiple member cluster scenarios. A comparison of scheduling efficiency with and without data aggregation shows that aggregation has minimal effects on the system’s scheduling function. These results indicate that our approach is superior to the existing solution and is suitable to handle large-scale geo-distributed Kubernetes cluster federation environments.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.