Chun Chen;Yong Zhang;Boon Han Lim;Li Ning;Shengzhong Feng;Peng Xie
{"title":"光伏网络分布式能源交易的多参数预测框架","authors":"Chun Chen;Yong Zhang;Boon Han Lim;Li Ning;Shengzhong Feng;Peng Xie","doi":"10.26599/TST.2024.9010150","DOIUrl":null,"url":null,"abstract":"The rapid evolution of distributed energy resources, particularly photovoltaic systems, poses a formidable challenge in maintaining a delicate balance between energy supply and demand while minimizing costs. The integrated nature of distributed markets, blending centralized and decentralized elements, holds the promise of maximizing social welfare and significantly reducing overall costs, including computational and communication expenses. However, achieving this balance requires careful consideration of various hyperparameter sets, encompassing factors such as the number of communities, community detection methods, and trading mechanisms employed among nodes. To address this challenge, we introduce a groundbreaking neural network-based framework, the Energy Trading-based Artificial Neural Network (ET-ANN), which excels in performance compared to existing algorithms. Our experiments underscore the superiority of ET-ANN in minimizing total energy transaction costs while maximizing social welfare within the realm of photovoltaic networks.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"864-874"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786948","citationCount":"0","resultStr":"{\"title\":\"A Multi-Hyperparameter Prediction Framework for Distributed Energy Trading on Photovoltaic Network\",\"authors\":\"Chun Chen;Yong Zhang;Boon Han Lim;Li Ning;Shengzhong Feng;Peng Xie\",\"doi\":\"10.26599/TST.2024.9010150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid evolution of distributed energy resources, particularly photovoltaic systems, poses a formidable challenge in maintaining a delicate balance between energy supply and demand while minimizing costs. The integrated nature of distributed markets, blending centralized and decentralized elements, holds the promise of maximizing social welfare and significantly reducing overall costs, including computational and communication expenses. However, achieving this balance requires careful consideration of various hyperparameter sets, encompassing factors such as the number of communities, community detection methods, and trading mechanisms employed among nodes. To address this challenge, we introduce a groundbreaking neural network-based framework, the Energy Trading-based Artificial Neural Network (ET-ANN), which excels in performance compared to existing algorithms. Our experiments underscore the superiority of ET-ANN in minimizing total energy transaction costs while maximizing social welfare within the realm of photovoltaic networks.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 2\",\"pages\":\"864-874\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786948\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786948/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786948/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
A Multi-Hyperparameter Prediction Framework for Distributed Energy Trading on Photovoltaic Network
The rapid evolution of distributed energy resources, particularly photovoltaic systems, poses a formidable challenge in maintaining a delicate balance between energy supply and demand while minimizing costs. The integrated nature of distributed markets, blending centralized and decentralized elements, holds the promise of maximizing social welfare and significantly reducing overall costs, including computational and communication expenses. However, achieving this balance requires careful consideration of various hyperparameter sets, encompassing factors such as the number of communities, community detection methods, and trading mechanisms employed among nodes. To address this challenge, we introduce a groundbreaking neural network-based framework, the Energy Trading-based Artificial Neural Network (ET-ANN), which excels in performance compared to existing algorithms. Our experiments underscore the superiority of ET-ANN in minimizing total energy transaction costs while maximizing social welfare within the realm of photovoltaic networks.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.