土工格栅加固对膨胀土开裂特性的影响:实验室研究

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Rui Zhang, Yu Zhou, Yipeng Guo, JianLong Zheng, Yufan Deng, Tian Lan
{"title":"土工格栅加固对膨胀土开裂特性的影响:实验室研究","authors":"Rui Zhang, Yu Zhou, Yipeng Guo, JianLong Zheng, Yufan Deng, Tian Lan","doi":"10.1016/j.geotexmem.2024.11.014","DOIUrl":null,"url":null,"abstract":"Expansive soils are susceptible to cracking due to significant moisture fluctuations, which can potentially lead to structural instability. Although geogrid reinforcement is widely used to control soil swelling and shrinkage, its effects on cracking behavior are not fully understood. This study investigates the influence of geogrid reinforcement on the cracking behavior of expansive soils by comparing soil samples reinforced with two layers of geogrid to unreinforced samples under evaporation conditions. Crack development was monitored using high-resolution imaging and fluorescence tracing to measure crack depth and calculate surface crack ratio. Additionally, moisture content distribution and evaporation rates were assessed. The results show that geogrid reinforcement reduced the total crack ratio by 1.34% and decreased average crack depth by 43.5%, leading to a more uniform crack distribution with smaller openings. Both internal and external cracks facilitated moisture exchange between the soil and atmosphere. The frictional and interlocking effects at the soil-geogrid interface effectively inhibited cracking and reduced moisture migration. The uniaxial geogrid also induced anisotropy crack restraint, with environmental exposure and geogrid orientation playing critical roles in crack control. Overall, these findings demonstrate the effectiveness of geogrids in enhancing the stability of expansive soils and limiting atmospheric influence through crack suppression.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"238 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of geogrid reinforcement on the cracking characteristics of expansive soils: A laboratory study\",\"authors\":\"Rui Zhang, Yu Zhou, Yipeng Guo, JianLong Zheng, Yufan Deng, Tian Lan\",\"doi\":\"10.1016/j.geotexmem.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expansive soils are susceptible to cracking due to significant moisture fluctuations, which can potentially lead to structural instability. Although geogrid reinforcement is widely used to control soil swelling and shrinkage, its effects on cracking behavior are not fully understood. This study investigates the influence of geogrid reinforcement on the cracking behavior of expansive soils by comparing soil samples reinforced with two layers of geogrid to unreinforced samples under evaporation conditions. Crack development was monitored using high-resolution imaging and fluorescence tracing to measure crack depth and calculate surface crack ratio. Additionally, moisture content distribution and evaporation rates were assessed. The results show that geogrid reinforcement reduced the total crack ratio by 1.34% and decreased average crack depth by 43.5%, leading to a more uniform crack distribution with smaller openings. Both internal and external cracks facilitated moisture exchange between the soil and atmosphere. The frictional and interlocking effects at the soil-geogrid interface effectively inhibited cracking and reduced moisture migration. The uniaxial geogrid also induced anisotropy crack restraint, with environmental exposure and geogrid orientation playing critical roles in crack control. Overall, these findings demonstrate the effectiveness of geogrids in enhancing the stability of expansive soils and limiting atmospheric influence through crack suppression.\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geotexmem.2024.11.014\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.11.014","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of geogrid reinforcement on the cracking characteristics of expansive soils: A laboratory study
Expansive soils are susceptible to cracking due to significant moisture fluctuations, which can potentially lead to structural instability. Although geogrid reinforcement is widely used to control soil swelling and shrinkage, its effects on cracking behavior are not fully understood. This study investigates the influence of geogrid reinforcement on the cracking behavior of expansive soils by comparing soil samples reinforced with two layers of geogrid to unreinforced samples under evaporation conditions. Crack development was monitored using high-resolution imaging and fluorescence tracing to measure crack depth and calculate surface crack ratio. Additionally, moisture content distribution and evaporation rates were assessed. The results show that geogrid reinforcement reduced the total crack ratio by 1.34% and decreased average crack depth by 43.5%, leading to a more uniform crack distribution with smaller openings. Both internal and external cracks facilitated moisture exchange between the soil and atmosphere. The frictional and interlocking effects at the soil-geogrid interface effectively inhibited cracking and reduced moisture migration. The uniaxial geogrid also induced anisotropy crack restraint, with environmental exposure and geogrid orientation playing critical roles in crack control. Overall, these findings demonstrate the effectiveness of geogrids in enhancing the stability of expansive soils and limiting atmospheric influence through crack suppression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信