表面 pKa 和酸在水性金属界面行为的第一性原理研究

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Basil Raju Karimadom, Dan Meyerstein, Amir Mizrahi, Haya Kornweitz
{"title":"表面 pKa 和酸在水性金属界面行为的第一性原理研究","authors":"Basil Raju Karimadom, Dan Meyerstein, Amir Mizrahi, Haya Kornweitz","doi":"10.1021/acs.jpcc.4c06554","DOIUrl":null,"url":null,"abstract":"Several computational methods were reported for the accurate determination of p<i>K</i><sub>a</sub> values in a solvent medium, but the research on surfaces and interfaces is limited. This study reports a new method for accurately determining the surface p<i>K</i><sub>a</sub> (*p<i>K</i><sub>a</sub>) of acids on surfaces. The *p<i>K</i><sub>a</sub> is defined as the function of the adsorption energies of neutral acids and their deprotonated form. In the suggested method, the estimated proton solvation-free energy value is not required, a fact that increases the accuracy of the results. The *p<i>K</i><sub>a</sub> values of various organic and inorganic acids on the (111) surfaces of Ag, Au, and Pt were evaluated. The results are validated with available experimental results on various surface coverage ratios. The results point out that weak acids adsorbed on the metal-aqueous interface are orders of magnitude stronger acids than those in homogeneous solutions. The shift of the p<i>K</i><sub>a</sub>s is largest on platinum. These results are of major importance in electrochemistry and heterogeneous catalysis.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"4 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Investigation of Surface pKa and the Behavior of Acids at Aqueous–Metal Interfaces\",\"authors\":\"Basil Raju Karimadom, Dan Meyerstein, Amir Mizrahi, Haya Kornweitz\",\"doi\":\"10.1021/acs.jpcc.4c06554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several computational methods were reported for the accurate determination of p<i>K</i><sub>a</sub> values in a solvent medium, but the research on surfaces and interfaces is limited. This study reports a new method for accurately determining the surface p<i>K</i><sub>a</sub> (*p<i>K</i><sub>a</sub>) of acids on surfaces. The *p<i>K</i><sub>a</sub> is defined as the function of the adsorption energies of neutral acids and their deprotonated form. In the suggested method, the estimated proton solvation-free energy value is not required, a fact that increases the accuracy of the results. The *p<i>K</i><sub>a</sub> values of various organic and inorganic acids on the (111) surfaces of Ag, Au, and Pt were evaluated. The results are validated with available experimental results on various surface coverage ratios. The results point out that weak acids adsorbed on the metal-aqueous interface are orders of magnitude stronger acids than those in homogeneous solutions. The shift of the p<i>K</i><sub>a</sub>s is largest on platinum. These results are of major importance in electrochemistry and heterogeneous catalysis.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c06554\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06554","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-Principles Investigation of Surface pKa and the Behavior of Acids at Aqueous–Metal Interfaces

First-Principles Investigation of Surface pKa and the Behavior of Acids at Aqueous–Metal Interfaces
Several computational methods were reported for the accurate determination of pKa values in a solvent medium, but the research on surfaces and interfaces is limited. This study reports a new method for accurately determining the surface pKa (*pKa) of acids on surfaces. The *pKa is defined as the function of the adsorption energies of neutral acids and their deprotonated form. In the suggested method, the estimated proton solvation-free energy value is not required, a fact that increases the accuracy of the results. The *pKa values of various organic and inorganic acids on the (111) surfaces of Ag, Au, and Pt were evaluated. The results are validated with available experimental results on various surface coverage ratios. The results point out that weak acids adsorbed on the metal-aqueous interface are orders of magnitude stronger acids than those in homogeneous solutions. The shift of the pKas is largest on platinum. These results are of major importance in electrochemistry and heterogeneous catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信