Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling
{"title":"通过多轨道物理绕过强相关超导体中的晶格BCS-BEC交叉","authors":"Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling","doi":"10.1038/s41535-024-00706-7","DOIUrl":null,"url":null,"abstract":"<p>Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A<sub>3</sub>C<sub>60</sub>) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (<i>ξ</i><sub>0</sub>) and the London penetration depth (<i>λ</i><sub>L</sub>), even in presence of strong electron correlations.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"21 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bypassing the lattice BCS–BEC crossover in strongly correlated superconductors through multiorbital physics\",\"authors\":\"Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling\",\"doi\":\"10.1038/s41535-024-00706-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A<sub>3</sub>C<sub>60</sub>) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (<i>ξ</i><sub>0</sub>) and the London penetration depth (<i>λ</i><sub>L</sub>), even in presence of strong electron correlations.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00706-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00706-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bypassing the lattice BCS–BEC crossover in strongly correlated superconductors through multiorbital physics
Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A3C60) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (ξ0) and the London penetration depth (λL), even in presence of strong electron correlations.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.