通过多轨道物理绕过强相关超导体中的晶格BCS-BEC交叉

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling
{"title":"通过多轨道物理绕过强相关超导体中的晶格BCS-BEC交叉","authors":"Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling","doi":"10.1038/s41535-024-00706-7","DOIUrl":null,"url":null,"abstract":"<p>Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A<sub>3</sub>C<sub>60</sub>) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (<i>ξ</i><sub>0</sub>) and the London penetration depth (<i>λ</i><sub>L</sub>), even in presence of strong electron correlations.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"21 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bypassing the lattice BCS–BEC crossover in strongly correlated superconductors through multiorbital physics\",\"authors\":\"Niklas Witt, Yusuke Nomura, Sergey Brener, Ryotaro Arita, Alexander I. Lichtenstein, Tim O. Wehling\",\"doi\":\"10.1038/s41535-024-00706-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A<sub>3</sub>C<sub>60</sub>) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (<i>ξ</i><sub>0</sub>) and the London penetration depth (<i>λ</i><sub>L</sub>), even in presence of strong electron correlations.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00706-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00706-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超导性产生于库柏对宏观凝聚体的空间相干性。电子在这些对中的结合和定位越来越强,损害了凝聚物的相刚度,从而限制了临界温度,这种现象在晶格系统中被称为BCS-BEC交叉。在这项研究中,我们证明了碱掺杂富勒化物(A3C60)的多轨道模型中超导性的增强,超出了晶格BCS-BEC交叉的限制。我们发现,强相关和多轨道效应的相互作用导致局域超导态,其特征是相干长度短,但刚性强,临界温度随配对相互作用的增加而无上限上升。为了获得这些见解,我们引入了一个新的理论框架,使我们能够计算超导体的基本长度尺度,即相干长度(ξ0)和伦敦穿透深度(λL),即使存在强电子相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bypassing the lattice BCS–BEC crossover in strongly correlated superconductors through multiorbital physics

Bypassing the lattice BCS–BEC crossover in strongly correlated superconductors through multiorbital physics

Superconductivity emerges from the spatial coherence of a macroscopic condensate of Cooper pairs. Increasingly strong binding and localization of electrons into these pairs compromises the condensate’s phase stiffness, thereby limiting critical temperatures – a phenomenon known as the BCS–BEC crossover in lattice systems. In this study, we demonstrate enhanced superconductivity in a multiorbital model of alkali-doped fullerides (A3C60) that goes beyond the limits of the lattice BCS–BEC crossover. We identify that the interplay of strong correlations and multiorbital effects results in a localized superconducting state characterized by a short coherence length but robust stiffness and a domeless rise in critical temperature with increasing pairing interaction. To derive these insights, we introduce a new theoretical framework allowing us to calculate the fundamental length scales of superconductors, namely the coherence length (ξ0) and the London penetration depth (λL), even in presence of strong electron correlations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信