Lachlan Arthur, Vasiliki Voulgaridou, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros
{"title":"缺血血流的超分辨率超声成像:模拟研究","authors":"Lachlan Arthur, Vasiliki Voulgaridou, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros","doi":"10.1016/j.jtbi.2024.112018","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution ultrasound (SRU) is a new ultrasound imaging mode that promises to facilitate the detection of microvascular disease by providing new vascular bio-markers that are directly linked to microvascular pathophysiology, thereby augmenting current knowledge and potentially enabling new treatment. Such a capability can be developed through thorough understanding as articulated by means of mathematical models. In this study, a 2D numerical flow model is adopted for generating flow adaptation in response to ischaemia, in order to determine the ability of SRU to register the resulting flow perturbations. The flow model results demonstrate that variations in flow behaviour in response to locally induced ischaemia can be significant throughout the entire vascular bed. Measured velocities have variations that are dependent on the location of ischaemia, with median values ranging between 2-7 mms<sup>-1</sup>. Moreover, the distinction between healthy and ischaemic networks are recorded accurately in the SRU results showing excellent agreement between SRU maps and the model. Up to 7-fold spatial resolution improvement to conventional contrast ultrasound was achieved in microbubble localisation while the detection precision and recall was consistently above 98%. The microbubble tracking precision was of a similar accuracy, whereas the recall was reduced (77%) under varying ischaemic impacted flow. Further, regions with velocities up to 30 mms<sup>-1</sup> are in excellent agreement with SRU maps, while at regions that include a proportion of higher velocities, the median velocity values are within 1.28%-3.32% of the ground-truth. In conclusion, SRU is a highly promising methodology for the direct measurement of microvascular flow dynamics and may provide a valuable tool for the understanding and subsequent modelling of behaviour in the vascular bed.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112018"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution ultrasound imaging of ischaemia flow: An in silico study.\",\"authors\":\"Lachlan Arthur, Vasiliki Voulgaridou, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros\",\"doi\":\"10.1016/j.jtbi.2024.112018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Super-resolution ultrasound (SRU) is a new ultrasound imaging mode that promises to facilitate the detection of microvascular disease by providing new vascular bio-markers that are directly linked to microvascular pathophysiology, thereby augmenting current knowledge and potentially enabling new treatment. Such a capability can be developed through thorough understanding as articulated by means of mathematical models. In this study, a 2D numerical flow model is adopted for generating flow adaptation in response to ischaemia, in order to determine the ability of SRU to register the resulting flow perturbations. The flow model results demonstrate that variations in flow behaviour in response to locally induced ischaemia can be significant throughout the entire vascular bed. Measured velocities have variations that are dependent on the location of ischaemia, with median values ranging between 2-7 mms<sup>-1</sup>. Moreover, the distinction between healthy and ischaemic networks are recorded accurately in the SRU results showing excellent agreement between SRU maps and the model. Up to 7-fold spatial resolution improvement to conventional contrast ultrasound was achieved in microbubble localisation while the detection precision and recall was consistently above 98%. The microbubble tracking precision was of a similar accuracy, whereas the recall was reduced (77%) under varying ischaemic impacted flow. Further, regions with velocities up to 30 mms<sup>-1</sup> are in excellent agreement with SRU maps, while at regions that include a proportion of higher velocities, the median velocity values are within 1.28%-3.32% of the ground-truth. In conclusion, SRU is a highly promising methodology for the direct measurement of microvascular flow dynamics and may provide a valuable tool for the understanding and subsequent modelling of behaviour in the vascular bed.</p>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\" \",\"pages\":\"112018\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtbi.2024.112018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.112018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Super-resolution ultrasound imaging of ischaemia flow: An in silico study.
Super-resolution ultrasound (SRU) is a new ultrasound imaging mode that promises to facilitate the detection of microvascular disease by providing new vascular bio-markers that are directly linked to microvascular pathophysiology, thereby augmenting current knowledge and potentially enabling new treatment. Such a capability can be developed through thorough understanding as articulated by means of mathematical models. In this study, a 2D numerical flow model is adopted for generating flow adaptation in response to ischaemia, in order to determine the ability of SRU to register the resulting flow perturbations. The flow model results demonstrate that variations in flow behaviour in response to locally induced ischaemia can be significant throughout the entire vascular bed. Measured velocities have variations that are dependent on the location of ischaemia, with median values ranging between 2-7 mms-1. Moreover, the distinction between healthy and ischaemic networks are recorded accurately in the SRU results showing excellent agreement between SRU maps and the model. Up to 7-fold spatial resolution improvement to conventional contrast ultrasound was achieved in microbubble localisation while the detection precision and recall was consistently above 98%. The microbubble tracking precision was of a similar accuracy, whereas the recall was reduced (77%) under varying ischaemic impacted flow. Further, regions with velocities up to 30 mms-1 are in excellent agreement with SRU maps, while at regions that include a proportion of higher velocities, the median velocity values are within 1.28%-3.32% of the ground-truth. In conclusion, SRU is a highly promising methodology for the direct measurement of microvascular flow dynamics and may provide a valuable tool for the understanding and subsequent modelling of behaviour in the vascular bed.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.