{"title":"基于中等样本量的无创综合模型在区分肾脏贫脂血管瘤和同种透明细胞肾细胞癌方面具有良好的诊断性能。","authors":"Jinyan Wei, Yurong Ma, Jianqiang Liu, Jianhong Zhao, Junlin Zhou","doi":"10.1016/j.urolonc.2024.11.013","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine the diagnostic value of a comprehensive model based on unenhanced computed tomography (CT) images for distinguishing fat-poor angiomyolipoma (fp-AML) from homogeneous clear cell renal cell carcinoma (hm-ccRCC).</p><p><strong>Methods: </strong>We retrospectively reviewed 27 patients with fp-AML and 63 with hm-ccRCC. Demographic data and conventional CT features of the lesions were recorded (including sex, age, symptoms, lesion location, shape, boundary, unenhanced CT attenuation and so on). Whole tumor regions of interest were drawn on all slices to obtain histogram parameters (including minimum, maximum, mean, percentile, standard deviation, variance, coefficient of variation, skewness, kurtosis, and entropy) by two radiologists. Chi-square test, Mann-Whitney U test, or independent samples t-test were used to compare demographic data, CT features, and histogram parameters. Multivariate logistic regression analyses were used to screen for independent predictors distinguishing fp-AML from hm-ccRCC. Receiver operating characteristic curves were constructed to evaluate the diagnostic performances of the models.</p><p><strong>Results: </strong>Age, sex, tumor boundary, unenhanced CT attenuation, maximum tumor diameter, and tumor volume significantly differed between patients with fp-AML and those with hm-ccRCC (P < 0.05). The minimum, mean, first percentile (Perc.01), Perc.05, Perc.10, Perc.25, Perc.50, Perc.75, Perc.90, Perc.95, and Perc.99 of the Fp-AML group were higher than those of the hm-ccRCC group (P < 0.05). Coefficient of variance, skewness, and kurtosis were lower than those in the hm-ccRCC group (all P < 0.05). Age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25 were independent predictors for distinguishing fp-AML from hm-ccRCC (all P < 0.05). The comprehensive model, incorporating age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25, showed the best diagnostic performance (AUC = 0.979).</p><p><strong>Conclusion: </strong>The comprehensive model based on unenhanced CT imaging can accurately distinguish fp-AML from hm-ccRCC and may assist clinicians in tailoring precise therapy, while also helping to improve the diagnosis and management of renal tumors, leading to the selection of effective treatment options.</p>","PeriodicalId":23408,"journal":{"name":"Urologic Oncology-seminars and Original Investigations","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A noninvasive comprehensive model based on medium sample size had good diagnostic performance in distinguishing renal fat-poor angiomyolipoma from homogeneous clear cell renal cell carcinoma.\",\"authors\":\"Jinyan Wei, Yurong Ma, Jianqiang Liu, Jianhong Zhao, Junlin Zhou\",\"doi\":\"10.1016/j.urolonc.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To determine the diagnostic value of a comprehensive model based on unenhanced computed tomography (CT) images for distinguishing fat-poor angiomyolipoma (fp-AML) from homogeneous clear cell renal cell carcinoma (hm-ccRCC).</p><p><strong>Methods: </strong>We retrospectively reviewed 27 patients with fp-AML and 63 with hm-ccRCC. Demographic data and conventional CT features of the lesions were recorded (including sex, age, symptoms, lesion location, shape, boundary, unenhanced CT attenuation and so on). Whole tumor regions of interest were drawn on all slices to obtain histogram parameters (including minimum, maximum, mean, percentile, standard deviation, variance, coefficient of variation, skewness, kurtosis, and entropy) by two radiologists. Chi-square test, Mann-Whitney U test, or independent samples t-test were used to compare demographic data, CT features, and histogram parameters. Multivariate logistic regression analyses were used to screen for independent predictors distinguishing fp-AML from hm-ccRCC. Receiver operating characteristic curves were constructed to evaluate the diagnostic performances of the models.</p><p><strong>Results: </strong>Age, sex, tumor boundary, unenhanced CT attenuation, maximum tumor diameter, and tumor volume significantly differed between patients with fp-AML and those with hm-ccRCC (P < 0.05). The minimum, mean, first percentile (Perc.01), Perc.05, Perc.10, Perc.25, Perc.50, Perc.75, Perc.90, Perc.95, and Perc.99 of the Fp-AML group were higher than those of the hm-ccRCC group (P < 0.05). Coefficient of variance, skewness, and kurtosis were lower than those in the hm-ccRCC group (all P < 0.05). Age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25 were independent predictors for distinguishing fp-AML from hm-ccRCC (all P < 0.05). The comprehensive model, incorporating age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25, showed the best diagnostic performance (AUC = 0.979).</p><p><strong>Conclusion: </strong>The comprehensive model based on unenhanced CT imaging can accurately distinguish fp-AML from hm-ccRCC and may assist clinicians in tailoring precise therapy, while also helping to improve the diagnosis and management of renal tumors, leading to the selection of effective treatment options.</p>\",\"PeriodicalId\":23408,\"journal\":{\"name\":\"Urologic Oncology-seminars and Original Investigations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urologic Oncology-seminars and Original Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.urolonc.2024.11.013\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urologic Oncology-seminars and Original Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.urolonc.2024.11.013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A noninvasive comprehensive model based on medium sample size had good diagnostic performance in distinguishing renal fat-poor angiomyolipoma from homogeneous clear cell renal cell carcinoma.
Purpose: To determine the diagnostic value of a comprehensive model based on unenhanced computed tomography (CT) images for distinguishing fat-poor angiomyolipoma (fp-AML) from homogeneous clear cell renal cell carcinoma (hm-ccRCC).
Methods: We retrospectively reviewed 27 patients with fp-AML and 63 with hm-ccRCC. Demographic data and conventional CT features of the lesions were recorded (including sex, age, symptoms, lesion location, shape, boundary, unenhanced CT attenuation and so on). Whole tumor regions of interest were drawn on all slices to obtain histogram parameters (including minimum, maximum, mean, percentile, standard deviation, variance, coefficient of variation, skewness, kurtosis, and entropy) by two radiologists. Chi-square test, Mann-Whitney U test, or independent samples t-test were used to compare demographic data, CT features, and histogram parameters. Multivariate logistic regression analyses were used to screen for independent predictors distinguishing fp-AML from hm-ccRCC. Receiver operating characteristic curves were constructed to evaluate the diagnostic performances of the models.
Results: Age, sex, tumor boundary, unenhanced CT attenuation, maximum tumor diameter, and tumor volume significantly differed between patients with fp-AML and those with hm-ccRCC (P < 0.05). The minimum, mean, first percentile (Perc.01), Perc.05, Perc.10, Perc.25, Perc.50, Perc.75, Perc.90, Perc.95, and Perc.99 of the Fp-AML group were higher than those of the hm-ccRCC group (P < 0.05). Coefficient of variance, skewness, and kurtosis were lower than those in the hm-ccRCC group (all P < 0.05). Age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25 were independent predictors for distinguishing fp-AML from hm-ccRCC (all P < 0.05). The comprehensive model, incorporating age, maximum tumor diameter, unenhanced CT attenuation, and Perc.25, showed the best diagnostic performance (AUC = 0.979).
Conclusion: The comprehensive model based on unenhanced CT imaging can accurately distinguish fp-AML from hm-ccRCC and may assist clinicians in tailoring precise therapy, while also helping to improve the diagnosis and management of renal tumors, leading to the selection of effective treatment options.
期刊介绍:
Urologic Oncology: Seminars and Original Investigations is the official journal of the Society of Urologic Oncology. The journal publishes practical, timely, and relevant clinical and basic science research articles which address any aspect of urologic oncology. Each issue comprises original research, news and topics, survey articles providing short commentaries on other important articles in the urologic oncology literature, and reviews including an in-depth Seminar examining a specific clinical dilemma. The journal periodically publishes supplement issues devoted to areas of current interest to the urologic oncology community. Articles published are of interest to researchers and the clinicians involved in the practice of urologic oncology including urologists, oncologists, and radiologists.