Zhiqiang Ouyang , Guodong Zhang , Shaonan He , Qiubo Huang , Liren Zhang , Xirui Duan , Xuerong Zhang , Yifan Liu , Tengfei Ke , Jun Yang , Conghui Ai , Yi Lu , Chengde Liao
{"title":"CT和MRI双峰放射组学预测NSCLC脑转移患者EGFR状态:一项多中心研究。","authors":"Zhiqiang Ouyang , Guodong Zhang , Shaonan He , Qiubo Huang , Liren Zhang , Xirui Duan , Xuerong Zhang , Yifan Liu , Tengfei Ke , Jun Yang , Conghui Ai , Yi Lu , Chengde Liao","doi":"10.1016/j.ejrad.2024.111853","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Leveraging the radiomics information from non-small cell lung cancer (NSCLC) primary lesion and brain metastasis (BM) to develop and validate a bimodal radiomics nomogram that can accurately predict epidermal growth factor receptor (EGFR) status.</div></div><div><h3>Methods</h3><div>A total of 309 NSCLC patients with BM from three independent centers were recruited. Among them, the patients of Center I were randomly allocated into the training and internal test cohorts in a 7:3 ratio. Meanwhile, the patients from Center Ⅱ and Center Ⅲ collectively constitute the external test cohort. All chest CT and brain MRI images of each patient were obtained for image registration and sequence combination within a single modality. After image preprocessing, 1037 radiomics features were extracted from each single sequence. Six machine learning algorithms were used to construct radiomics signatures for CT and MRI respectively. The best CT and MRI radiomics signatures were fitted to establish the bimodal radiomics nomogram for predicting the EGFR status.</div></div><div><h3>Results</h3><div>The contrast-enhanced (CE) eXtreme gradient boosting (XG Boost) and T2-weighted imaging (T2WI) + T1-weighted contrast-enhanced imaging (T1CE) random forest models were chosen as the radiomics signature representing primary lesion and BM. Both models were found to be independent predictors of EGFR mutation. The bimodal radiomics nomogram, which incorporated CT radiomics signature and MRI radiomics signature, demonstrated a good calibration and discrimination in the internal test cohort [area under curve (AUC), 0.866; 95 % confidence intervals (CI), 0.778–0.950) and the external test cohort (AUC, 0.818; 95 % CI, 0.691–0.938).</div></div><div><h3>Conclusions</h3><div>Our CT and MRI bimodal radiomics nomogram could timely and accurately evaluate the likelihood of EGFR mutation in patients with limited access to necessary materials, thus making up for the shortcoming of plasma sequencing and promoting the advancement of precision medicine.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"183 ","pages":"Article 111853"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT and MRI bimodal radiomics for predicting EGFR status in NSCLC patients with brain metastases: A multicenter study\",\"authors\":\"Zhiqiang Ouyang , Guodong Zhang , Shaonan He , Qiubo Huang , Liren Zhang , Xirui Duan , Xuerong Zhang , Yifan Liu , Tengfei Ke , Jun Yang , Conghui Ai , Yi Lu , Chengde Liao\",\"doi\":\"10.1016/j.ejrad.2024.111853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Leveraging the radiomics information from non-small cell lung cancer (NSCLC) primary lesion and brain metastasis (BM) to develop and validate a bimodal radiomics nomogram that can accurately predict epidermal growth factor receptor (EGFR) status.</div></div><div><h3>Methods</h3><div>A total of 309 NSCLC patients with BM from three independent centers were recruited. Among them, the patients of Center I were randomly allocated into the training and internal test cohorts in a 7:3 ratio. Meanwhile, the patients from Center Ⅱ and Center Ⅲ collectively constitute the external test cohort. All chest CT and brain MRI images of each patient were obtained for image registration and sequence combination within a single modality. After image preprocessing, 1037 radiomics features were extracted from each single sequence. Six machine learning algorithms were used to construct radiomics signatures for CT and MRI respectively. The best CT and MRI radiomics signatures were fitted to establish the bimodal radiomics nomogram for predicting the EGFR status.</div></div><div><h3>Results</h3><div>The contrast-enhanced (CE) eXtreme gradient boosting (XG Boost) and T2-weighted imaging (T2WI) + T1-weighted contrast-enhanced imaging (T1CE) random forest models were chosen as the radiomics signature representing primary lesion and BM. Both models were found to be independent predictors of EGFR mutation. The bimodal radiomics nomogram, which incorporated CT radiomics signature and MRI radiomics signature, demonstrated a good calibration and discrimination in the internal test cohort [area under curve (AUC), 0.866; 95 % confidence intervals (CI), 0.778–0.950) and the external test cohort (AUC, 0.818; 95 % CI, 0.691–0.938).</div></div><div><h3>Conclusions</h3><div>Our CT and MRI bimodal radiomics nomogram could timely and accurately evaluate the likelihood of EGFR mutation in patients with limited access to necessary materials, thus making up for the shortcoming of plasma sequencing and promoting the advancement of precision medicine.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"183 \",\"pages\":\"Article 111853\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X24005692\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24005692","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
CT and MRI bimodal radiomics for predicting EGFR status in NSCLC patients with brain metastases: A multicenter study
Background
Leveraging the radiomics information from non-small cell lung cancer (NSCLC) primary lesion and brain metastasis (BM) to develop and validate a bimodal radiomics nomogram that can accurately predict epidermal growth factor receptor (EGFR) status.
Methods
A total of 309 NSCLC patients with BM from three independent centers were recruited. Among them, the patients of Center I were randomly allocated into the training and internal test cohorts in a 7:3 ratio. Meanwhile, the patients from Center Ⅱ and Center Ⅲ collectively constitute the external test cohort. All chest CT and brain MRI images of each patient were obtained for image registration and sequence combination within a single modality. After image preprocessing, 1037 radiomics features were extracted from each single sequence. Six machine learning algorithms were used to construct radiomics signatures for CT and MRI respectively. The best CT and MRI radiomics signatures were fitted to establish the bimodal radiomics nomogram for predicting the EGFR status.
Results
The contrast-enhanced (CE) eXtreme gradient boosting (XG Boost) and T2-weighted imaging (T2WI) + T1-weighted contrast-enhanced imaging (T1CE) random forest models were chosen as the radiomics signature representing primary lesion and BM. Both models were found to be independent predictors of EGFR mutation. The bimodal radiomics nomogram, which incorporated CT radiomics signature and MRI radiomics signature, demonstrated a good calibration and discrimination in the internal test cohort [area under curve (AUC), 0.866; 95 % confidence intervals (CI), 0.778–0.950) and the external test cohort (AUC, 0.818; 95 % CI, 0.691–0.938).
Conclusions
Our CT and MRI bimodal radiomics nomogram could timely and accurately evaluate the likelihood of EGFR mutation in patients with limited access to necessary materials, thus making up for the shortcoming of plasma sequencing and promoting the advancement of precision medicine.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.