心跳在健康人脑中诱发局部体积压缩:脑组织脉动的7 T磁共振成像研究。

IF 3.6 3区 生物学 Q1 BIOLOGY
Ellen van Hulst, Mario G Báez-Yáñez, Ayodeji L Adams, Geert Jan Biessels, Jacobus J M Zwanenburg
{"title":"心跳在健康人脑中诱发局部体积压缩:脑组织脉动的7 T磁共振成像研究。","authors":"Ellen van Hulst, Mario G Báez-Yáñez, Ayodeji L Adams, Geert Jan Biessels, Jacobus J M Zwanenburg","doi":"10.1098/rsfs.2024.0032","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological phenomenon. In DENSE data from nine healthy volunteers, voxels were grouped into three clusters according to volumetric strain in a tissue mask excluding extracerebral blood vessels and cerebrospinal fluid using a two-stage clustering approach. To confirm the physiological source of the compressions, data from a patient with a cranial opening was analysed. Spatial patterns of compressing and expanding clusters were matched to high-resolution anatomical scans, acquired in one additional individual. All healthy subjects consistently showed a cluster with compressive volumetric strain during systole, covering 10.2% [7.3-13.1%] (mean [95% confidence interval]) of the tissue mask, besides two expansion clusters. In the patient, no compression was observed. Although the compression cluster did not consistently co-localize with intracerebral veins or perivascular spaces on the anatomical scans, the first-stage clustering results suggested that the distinction between the clusters has a (peri)vascular source. In conclusion, brain tissue shows heartbeat-induced volumetric compressions, possibly indicating compression of porous structures such as intracerebral veins or perivascular spaces.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 6","pages":"20240032"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620826/pdf/","citationCount":"0","resultStr":"{\"title\":\"The heartbeat induces local volumetric compression in the healthy human brain: a 7 T magnetic resonance imaging study on brain tissue pulsations.\",\"authors\":\"Ellen van Hulst, Mario G Báez-Yáñez, Ayodeji L Adams, Geert Jan Biessels, Jacobus J M Zwanenburg\",\"doi\":\"10.1098/rsfs.2024.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological phenomenon. In DENSE data from nine healthy volunteers, voxels were grouped into three clusters according to volumetric strain in a tissue mask excluding extracerebral blood vessels and cerebrospinal fluid using a two-stage clustering approach. To confirm the physiological source of the compressions, data from a patient with a cranial opening was analysed. Spatial patterns of compressing and expanding clusters were matched to high-resolution anatomical scans, acquired in one additional individual. All healthy subjects consistently showed a cluster with compressive volumetric strain during systole, covering 10.2% [7.3-13.1%] (mean [95% confidence interval]) of the tissue mask, besides two expansion clusters. In the patient, no compression was observed. Although the compression cluster did not consistently co-localize with intracerebral veins or perivascular spaces on the anatomical scans, the first-stage clustering results suggested that the distinction between the clusters has a (peri)vascular source. In conclusion, brain tissue shows heartbeat-induced volumetric compressions, possibly indicating compression of porous structures such as intracerebral veins or perivascular spaces.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"14 6\",\"pages\":\"20240032\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2024.0032\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脑内血容量沿心脏周期变化引起脑组织的体积应变,可通过刺激回波(DENSE)磁共振成像的位移编码测量。个体体积应变图显示压缩和扩展体素,提出了收缩期压缩是否反映生理现象的问题。在来自9名健康志愿者的DENSE数据中,采用两阶段聚类方法,根据组织面罩中排除脑外血管和脑脊液的体积应变,将体素分为三个聚类。为了确认压迫的生理来源,我们分析了一个颅开口患者的数据。压缩和扩展集群的空间模式与高分辨率解剖扫描相匹配,在另一个个体中获得。所有健康受试者在收缩期均出现压缩体积应变集群,除两个扩张集群外,覆盖10.2%[7.3-13.1%](平均值[95%置信区间])的组织面罩。患者未见压迫。虽然压缩簇在解剖扫描上并不一致地与脑内静脉或血管周围空间共定位,但第一阶段聚类结果表明,簇之间的区别有一个(周围)血管来源。总之,脑组织显示心跳引起的体积压缩,可能表明压缩了多孔结构,如脑内静脉或血管周围空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The heartbeat induces local volumetric compression in the healthy human brain: a 7 T magnetic resonance imaging study on brain tissue pulsations.

Intracerebral blood volume changes along the cardiac cycle cause volumetric strain in brain tissue, measurable with displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Individual volumetric strain maps show compressing and expanding voxels, raising the question whether systolic compressions reflect a physiological phenomenon. In DENSE data from nine healthy volunteers, voxels were grouped into three clusters according to volumetric strain in a tissue mask excluding extracerebral blood vessels and cerebrospinal fluid using a two-stage clustering approach. To confirm the physiological source of the compressions, data from a patient with a cranial opening was analysed. Spatial patterns of compressing and expanding clusters were matched to high-resolution anatomical scans, acquired in one additional individual. All healthy subjects consistently showed a cluster with compressive volumetric strain during systole, covering 10.2% [7.3-13.1%] (mean [95% confidence interval]) of the tissue mask, besides two expansion clusters. In the patient, no compression was observed. Although the compression cluster did not consistently co-localize with intracerebral veins or perivascular spaces on the anatomical scans, the first-stage clustering results suggested that the distinction between the clusters has a (peri)vascular source. In conclusion, brain tissue shows heartbeat-induced volumetric compressions, possibly indicating compression of porous structures such as intracerebral veins or perivascular spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信