Juan Diego Toscano, Chenxi Wu, Antonio Ladrón-de-Guevara, Ting Du, Maiken Nedergaard, Douglas H Kelley, George Em Karniadakis, Kimberly A S Boster
{"title":"用移动边界和不确定度量化的人工智能测速法推断体内小鼠脑脊液流量。","authors":"Juan Diego Toscano, Chenxi Wu, Antonio Ladrón-de-Guevara, Ting Du, Maiken Nedergaard, Douglas H Kelley, George Em Karniadakis, Kimberly A S Boster","doi":"10.1098/rsfs.2024.0030","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) flow is crucial for clearing metabolic waste from the brain, a process whose dysregulation is linked to neurodegenerative diseases like Alzheimer's. Traditional approaches like particle tracking velocimetry (PTV) are limited by their reliance on single-plane two-dimensional measurements, which fail to capture the complex dynamics of CSF flow fully. To overcome these limitations, we employ artificial intelligence velocimetry (AIV) to reconstruct three-dimensional velocities, infer pressure and wall shear stress and quantify flow rates. Given the experimental nature of the data and inherent variability in biological systems, robust uncertainty quantification (UQ) is essential. Towards this end, we have modified the baseline AIV architecture to address aleatoric uncertainty caused by noisy experimental data, enhancing our measurement refinement capabilities. We also implement UQ for the model and epistemic uncertainties arising from the governing equations and network representation. Towards this end, we test multiple governing laws, representation models and initializations. Our approach not only advances the accuracy of CSF flow quantification but also can be adapted to other applications that use physics-informed machine learning to reconstruct fields from experimental data, providing a versatile tool for inverse problems.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 6","pages":"20240030"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring <i>in vivo</i> murine cerebrospinal fluid flow using artificial intelligence velocimetry with moving boundaries and uncertainty quantification.\",\"authors\":\"Juan Diego Toscano, Chenxi Wu, Antonio Ladrón-de-Guevara, Ting Du, Maiken Nedergaard, Douglas H Kelley, George Em Karniadakis, Kimberly A S Boster\",\"doi\":\"10.1098/rsfs.2024.0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebrospinal fluid (CSF) flow is crucial for clearing metabolic waste from the brain, a process whose dysregulation is linked to neurodegenerative diseases like Alzheimer's. Traditional approaches like particle tracking velocimetry (PTV) are limited by their reliance on single-plane two-dimensional measurements, which fail to capture the complex dynamics of CSF flow fully. To overcome these limitations, we employ artificial intelligence velocimetry (AIV) to reconstruct three-dimensional velocities, infer pressure and wall shear stress and quantify flow rates. Given the experimental nature of the data and inherent variability in biological systems, robust uncertainty quantification (UQ) is essential. Towards this end, we have modified the baseline AIV architecture to address aleatoric uncertainty caused by noisy experimental data, enhancing our measurement refinement capabilities. We also implement UQ for the model and epistemic uncertainties arising from the governing equations and network representation. Towards this end, we test multiple governing laws, representation models and initializations. Our approach not only advances the accuracy of CSF flow quantification but also can be adapted to other applications that use physics-informed machine learning to reconstruct fields from experimental data, providing a versatile tool for inverse problems.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"14 6\",\"pages\":\"20240030\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2024.0030\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Inferring in vivo murine cerebrospinal fluid flow using artificial intelligence velocimetry with moving boundaries and uncertainty quantification.
Cerebrospinal fluid (CSF) flow is crucial for clearing metabolic waste from the brain, a process whose dysregulation is linked to neurodegenerative diseases like Alzheimer's. Traditional approaches like particle tracking velocimetry (PTV) are limited by their reliance on single-plane two-dimensional measurements, which fail to capture the complex dynamics of CSF flow fully. To overcome these limitations, we employ artificial intelligence velocimetry (AIV) to reconstruct three-dimensional velocities, infer pressure and wall shear stress and quantify flow rates. Given the experimental nature of the data and inherent variability in biological systems, robust uncertainty quantification (UQ) is essential. Towards this end, we have modified the baseline AIV architecture to address aleatoric uncertainty caused by noisy experimental data, enhancing our measurement refinement capabilities. We also implement UQ for the model and epistemic uncertainties arising from the governing equations and network representation. Towards this end, we test multiple governing laws, representation models and initializations. Our approach not only advances the accuracy of CSF flow quantification but also can be adapted to other applications that use physics-informed machine learning to reconstruct fields from experimental data, providing a versatile tool for inverse problems.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.