多囊卵巢综合征患者神经紧张素降低通过NTSR1/ERK/EGR1轴诱导排卵功能障碍。

IF 3.9 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Frontiers of Medicine Pub Date : 2025-02-01 Epub Date: 2024-12-09 DOI:10.1007/s11684-024-1089-z
Dongshuang Wang, Meiling Zhang, Wang-Sheng Wang, Weiwei Chu, Junyu Zhai, Yun Sun, Zi-Jiang Chen, Yanzhi Du
{"title":"多囊卵巢综合征患者神经紧张素降低通过NTSR1/ERK/EGR1轴诱导排卵功能障碍。","authors":"Dongshuang Wang, Meiling Zhang, Wang-Sheng Wang, Weiwei Chu, Junyu Zhai, Yun Sun, Zi-Jiang Chen, Yanzhi Du","doi":"10.1007/s11684-024-1089-z","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"149-169"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.\",\"authors\":\"Dongshuang Wang, Meiling Zhang, Wang-Sheng Wang, Weiwei Chu, Junyu Zhai, Yun Sun, Zi-Jiang Chen, Yanzhi Du\",\"doi\":\"10.1007/s11684-024-1089-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.</p>\",\"PeriodicalId\":12558,\"journal\":{\"name\":\"Frontiers of Medicine\",\"volume\":\" \",\"pages\":\"149-169\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11684-024-1089-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11684-024-1089-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

多囊卵巢综合征(PCOS)是育龄妇女生育能力低下的主要原因;然而,其病理生理机制尚不清楚。神经紧张素(NTS)是肠-脑肽家族的一员,参与排卵;其与多囊卵巢综合征的关系尚不清楚。我们发现PCOS患者卵巢颗粒细胞和卵泡液中NTS的表达明显降低。在卵丘-卵母细胞复合物的体外培养中,神经紧张素受体1 (NTSR1)拮抗剂SR48692通过抑制卵母细胞和周围卵丘细胞的代谢合作和破坏线粒体结构,阻断卵丘扩张和卵母细胞减数分裂成熟。此外,erk1 /2-早期生长反应1通路被发现是NTS/NTSR1在排卵过程中的关键下游介质。动物实验表明,小鼠体内注射SR48692降低排卵效率,导致发情期不规律,形成多囊卵巢。相比之下,NTS部分改善了脱氢表雄酮诱导的PCOS小鼠卵巢异常。我们的研究结果强调了NTS减少和随之而来的NTSR1信号异常在PCOS排卵功能障碍中的关键作用,为PCOS的治疗提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.

Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Medicine
Frontiers of Medicine ONCOLOGYMEDICINE, RESEARCH & EXPERIMENTAL&-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
18.30
自引率
0.00%
发文量
800
期刊介绍: Frontiers of Medicine is an international general medical journal sponsored by the Ministry of Education of China. The journal is jointly published by the Higher Education Press and Springer. Since the first issue of 2010, this journal has been indexed in PubMed/MEDLINE. Frontiers of Medicine is dedicated to publishing original research and review articles on the latest advances in clinical and basic medicine with a focus on epidemiology, traditional Chinese medicine, translational research, healthcare, public health and health policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信