新型无机立方钙钛矿X2SnBr6 (X = Cs, Rb, K, Na)通过DFT和SCAPS-1D实现了30%以上的效率

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Md. Ferdous Rahman, Tanvir Al Galib, Md. Azizur Rahman, Md. Hafizur Rahman, Md. Harun-Or-Rashid, Md. Al Ijajul Islam, Md. Monirul Islam, N. Dhahri and Ahmad Irfan
{"title":"新型无机立方钙钛矿X2SnBr6 (X = Cs, Rb, K, Na)通过DFT和SCAPS-1D实现了30%以上的效率","authors":"Md. Ferdous Rahman, Tanvir Al Galib, Md. Azizur Rahman, Md. Hafizur Rahman, Md. Harun-Or-Rashid, Md. Al Ijajul Islam, Md. Monirul Islam, N. Dhahri and Ahmad Irfan","doi":"10.1039/D4CP01883D","DOIUrl":null,"url":null,"abstract":"<p >The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X<small><sub>2</sub></small>SnBr<small><sub>6</sub></small> (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, Rb<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, K<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, and Na<small><sub>2</sub></small>SnBr<small><sub>6</sub></small> absorbers with TiO<small><sub>2</sub></small> electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (<em>V</em><small><sub>OC</sub></small>) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (<em>J</em><small><sub>SC</sub></small>) of 32.27, 36.72, 42.69, and 45.48 mA cm<small><sup>−2</sup></small>, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 2","pages":" 1155-1170"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D†\",\"authors\":\"Md. Ferdous Rahman, Tanvir Al Galib, Md. Azizur Rahman, Md. Hafizur Rahman, Md. Harun-Or-Rashid, Md. Al Ijajul Islam, Md. Monirul Islam, N. Dhahri and Ahmad Irfan\",\"doi\":\"10.1039/D4CP01883D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X<small><sub>2</sub></small>SnBr<small><sub>6</sub></small> (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, Rb<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, K<small><sub>2</sub></small>SnBr<small><sub>6</sub></small>, and Na<small><sub>2</sub></small>SnBr<small><sub>6</sub></small> absorbers with TiO<small><sub>2</sub></small> electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (<em>V</em><small><sub>OC</sub></small>) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (<em>J</em><small><sub>SC</sub></small>) of 32.27, 36.72, 42.69, and 45.48 mA cm<small><sup>−2</sup></small>, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 2\",\"pages\":\" 1155-1170\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp01883d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp01883d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能领域越来越关注无铅无机立方卤化物钙钛矿材料,因为它们具有特殊的结构、电子和光电子特性。在第一阶段,我们在本文中使用FP-DFT详细检查了X2SnBr6 (X = Cs, Rb, K, Na)的结构,电子和光学特性。此外,我们利用SCAPS-1D模拟器软件评估了它们的光伏性能。根据我们的观察,已经注意到每种材料在G (Gamma)点处都表现出直接带隙,良好的容差系数,可忽略的损耗和出色的吸收系数。因此,它们的潜在应用扩展到光伏电池和各种光电器件。因此,我们使用SCAPS-1D模拟器对基于Cs2SnBr6、Rb2SnBr6、K2SnBr6和Na2SnBr6吸收剂并加入TiO2 ETL层的太阳能电池结构的光伏性能进行了全面评估。该检查包括改变厚度、缺陷密度和掺杂水平。吸收层的最高功率转换效率(PCE)分别为:Cs2SnBr6为29.22%,Rb2SnBr6为27.25%,K2SnBr6为30.62%,Na2SnBr6为29.51%,VOC值分别为1.0246,0.8713,0.8345和0.7741V;JSC值分别为32.2656、36.7150、42.6921和45.484 mA/cm2;FF值分别为88.38、85.18、85.96、81.85%。我们的研究结果表明,x阳离子大小的变化会显著影响太阳能电池的带隙能量、能带结构和光电性能。因此,本研究有助于无铅混合太阳能电池和其他各类光电器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D†

Achieving efficiency above 30% with new inorganic cubic perovskites X2SnBr6 (X = Cs, Rb, K, Na) via DFT and SCAPS-1D†

The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of X2SnBr6 (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator – One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications. For Cs2SnBr6, Rb2SnBr6, K2SnBr6, and Na2SnBr6 absorbers with TiO2 electron transport layer (ETL), power conversion efficiencies (PCE) of 29.22%, 27.25%, 30.62%, and 29.51% were achieved, with open-circuit voltages (VOC) of 1.02, 0.87, 0.83, and 0.77 V, short-circuit currents (JSC) of 32.27, 36.72, 42.69, and 45.48 mA cm−2, and fill factors (FF) of 88.38, 85.18, 85.96, and 81.85%, respectively. Variations in X-cation size notably influence bandgap energy, band structure, and optoelectronic properties, impacting solar cell efficiency. This study supports the development of lead-free hybrid solar cells and other optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信