Bisma B. Patrianesha , Steffie M.B. Peters , Deni Hardiansyah , Rien Ritawidya , Bastiaan M. Privé , James Nagarajah , Mark W. Konijnenberg , Gerhard Glatting
{"title":"使用模型选择和贝叶斯拟合方法的单时间点剂量学:概念的证明。","authors":"Bisma B. Patrianesha , Steffie M.B. Peters , Deni Hardiansyah , Rien Ritawidya , Bastiaan M. Privé , James Nagarajah , Mark W. Konijnenberg , Gerhard Glatting","doi":"10.1016/j.ejmp.2024.104868","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study aimed to determine the effect of model selection on simplified dosimetry for the kidneys using Bayesian fitting (BF) and single-time-point (STP) imaging.</div></div><div><h3>Methods</h3><div>Kidney biokinetics data of [<sup>177</sup>Lu]Lu-PSMA-617 from mHSPC were collected using SPECT/CT after injection of (3.1 ± 0.1) GBq at time points T1(2.3 ± 0.5), T2(23.8 ± 2.0), T3(47.7 ± 2.2), T4(71.8 ± 2.2), and T5(167.4 ± 1.9) h post-injection. Eleven functions with various parameterizations and a combination of shared and individual parameters were used for model selection. Model averaging of functions with an Akaike weight of >10 % was used to calculate the reference TIAC (TIAC<sub>REF</sub>). STP BF method (STP-BF) was performed to determine the STP TIACs (TIAC<sub>STP-BF</sub>). The STP-BF performance was assessed by calculating the root-mean-square error (RMSE) of relative deviation between TIAC<sub>STP-BF</sub> and TIAC<sub>REF</sub>. In addition, the STP-BF performance was compared to the Hänscheid Method.</div></div><div><h3>Results</h3><div>The function <span><math><mrow><msub><mi>A</mi><mn>1</mn></msub><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mn>1</mn></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>phys</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup><mo>+</mo><msub><mi>A</mi><mn>2</mn></msub><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>phys</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup><mo>-</mo><mfenced><mrow><msub><mi>A</mi><mn>1</mn></msub><mo>+</mo><msub><mi>A</mi><mn>2</mn></msub></mrow></mfenced><msup><mrow><mspace></mspace><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mrow><mi>b</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>p</mi><mi>h</mi><mi>y</mi><mi>s</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup></mrow></math></span> with shared parameter <span><math><msub><mi>λ</mi><mn>2</mn></msub></math></span> was selected as the best function (Akaike weight of 57.91 %). STP-BF using the best function resulted in RMSEs of 20.3 %, 9.1 %, 8.4 %, 13.6 %, and 19.3 % at T1, T2, T3, T4, and T5, respectively. The RMSEs of STP-Hänscheid were 22.4 %, 14.6 %, and 21.9 % at T2, T3, and T4, respectively.</div></div><div><h3>Conclusion</h3><div>A model selection was presented to determine the fit function for calculating TIACs in STP-BF. This study shows that the STP dosimetry using BF and model selection performed better than the frequently used STP Hänscheid method.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"129 ","pages":"Article 104868"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-time-point dosimetry using model selection and the Bayesian fitting method: A proof of concept\",\"authors\":\"Bisma B. Patrianesha , Steffie M.B. Peters , Deni Hardiansyah , Rien Ritawidya , Bastiaan M. Privé , James Nagarajah , Mark W. Konijnenberg , Gerhard Glatting\",\"doi\":\"10.1016/j.ejmp.2024.104868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This study aimed to determine the effect of model selection on simplified dosimetry for the kidneys using Bayesian fitting (BF) and single-time-point (STP) imaging.</div></div><div><h3>Methods</h3><div>Kidney biokinetics data of [<sup>177</sup>Lu]Lu-PSMA-617 from mHSPC were collected using SPECT/CT after injection of (3.1 ± 0.1) GBq at time points T1(2.3 ± 0.5), T2(23.8 ± 2.0), T3(47.7 ± 2.2), T4(71.8 ± 2.2), and T5(167.4 ± 1.9) h post-injection. Eleven functions with various parameterizations and a combination of shared and individual parameters were used for model selection. Model averaging of functions with an Akaike weight of >10 % was used to calculate the reference TIAC (TIAC<sub>REF</sub>). STP BF method (STP-BF) was performed to determine the STP TIACs (TIAC<sub>STP-BF</sub>). The STP-BF performance was assessed by calculating the root-mean-square error (RMSE) of relative deviation between TIAC<sub>STP-BF</sub> and TIAC<sub>REF</sub>. In addition, the STP-BF performance was compared to the Hänscheid Method.</div></div><div><h3>Results</h3><div>The function <span><math><mrow><msub><mi>A</mi><mn>1</mn></msub><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mn>1</mn></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>phys</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup><mo>+</mo><msub><mi>A</mi><mn>2</mn></msub><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>phys</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup><mo>-</mo><mfenced><mrow><msub><mi>A</mi><mn>1</mn></msub><mo>+</mo><msub><mi>A</mi><mn>2</mn></msub></mrow></mfenced><msup><mrow><mspace></mspace><mi>e</mi></mrow><mrow><mo>-</mo><mfenced><mrow><msub><mi>λ</mi><mrow><mi>b</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mi>λ</mi><mrow><mi>p</mi><mi>h</mi><mi>y</mi><mi>s</mi></mrow></msub></mrow></mfenced><mi>t</mi></mrow></msup></mrow></math></span> with shared parameter <span><math><msub><mi>λ</mi><mn>2</mn></msub></math></span> was selected as the best function (Akaike weight of 57.91 %). STP-BF using the best function resulted in RMSEs of 20.3 %, 9.1 %, 8.4 %, 13.6 %, and 19.3 % at T1, T2, T3, T4, and T5, respectively. The RMSEs of STP-Hänscheid were 22.4 %, 14.6 %, and 21.9 % at T2, T3, and T4, respectively.</div></div><div><h3>Conclusion</h3><div>A model selection was presented to determine the fit function for calculating TIACs in STP-BF. This study shows that the STP dosimetry using BF and model selection performed better than the frequently used STP Hänscheid method.</div></div>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"129 \",\"pages\":\"Article 104868\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S112017972401336X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S112017972401336X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Single-time-point dosimetry using model selection and the Bayesian fitting method: A proof of concept
Purpose
This study aimed to determine the effect of model selection on simplified dosimetry for the kidneys using Bayesian fitting (BF) and single-time-point (STP) imaging.
Methods
Kidney biokinetics data of [177Lu]Lu-PSMA-617 from mHSPC were collected using SPECT/CT after injection of (3.1 ± 0.1) GBq at time points T1(2.3 ± 0.5), T2(23.8 ± 2.0), T3(47.7 ± 2.2), T4(71.8 ± 2.2), and T5(167.4 ± 1.9) h post-injection. Eleven functions with various parameterizations and a combination of shared and individual parameters were used for model selection. Model averaging of functions with an Akaike weight of >10 % was used to calculate the reference TIAC (TIACREF). STP BF method (STP-BF) was performed to determine the STP TIACs (TIACSTP-BF). The STP-BF performance was assessed by calculating the root-mean-square error (RMSE) of relative deviation between TIACSTP-BF and TIACREF. In addition, the STP-BF performance was compared to the Hänscheid Method.
Results
The function with shared parameter was selected as the best function (Akaike weight of 57.91 %). STP-BF using the best function resulted in RMSEs of 20.3 %, 9.1 %, 8.4 %, 13.6 %, and 19.3 % at T1, T2, T3, T4, and T5, respectively. The RMSEs of STP-Hänscheid were 22.4 %, 14.6 %, and 21.9 % at T2, T3, and T4, respectively.
Conclusion
A model selection was presented to determine the fit function for calculating TIACs in STP-BF. This study shows that the STP dosimetry using BF and model selection performed better than the frequently used STP Hänscheid method.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.