Xia Wang , Xiying Huang , Yongya Zhang , Huanhuan Huo , Guo Zhou , Linghong Shen , Long Li , Ben He
{"title":"硫化氢通过抑制ldhb介导的自噬通量来减弱紊乱血流诱导的血管重构","authors":"Xia Wang , Xiying Huang , Yongya Zhang , Huanhuan Huo , Guo Zhou , Linghong Shen , Long Li , Ben He","doi":"10.1016/j.redox.2024.103456","DOIUrl":null,"url":null,"abstract":"<div><div>Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (H<sub>2</sub>S) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear. Here, we showed that the H<sub>2</sub>S donor, NaHS suppressed DF-induced vascular remodeling in mice. Further experiments demonstrated that NaHS inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF), as well as the autophagy triggered by DF and PDGF. Mechanistically, RNA-Seq results revealed that NaHS counteracted the PDGF-induced upregulation of lactate dehydrogenase B (LDHB). Overexpression of LDHB abolished the protective effect of NaHS on DF-induced vascular remodeling. Furthermore, LDHB interacted with vacuolar-type proton ATPase catalytic subunit A (ATP6V1A), leading to lysosomal acidification, a process that was attenuated by NaHS treatment. The residues of leucine (Leu) 57 in ATP6V1A and serine (Ser) 269 in LDHB are critical for their interaction. Notably, the expression of LDHB was found to be elevated in vascular tissues from patients with abdominal aortic aneurysms (AAA) and thoracic aortic aneurysms (TAA). These data identify a molecular mechanism by which H<sub>2</sub>S attenuates DF-induced vascular remodeling by inhibiting LDHB and disrupting the interaction between LDHB and ATP6V1A, thereby impeding the autophagy process. Our findings provide insight that H<sub>2</sub>S or targeting LDHB has therapeutic potential for preventing and treating vascular remodeling.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"Article 103456"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen sulfide attenuates disturbed flow-induced vascular remodeling by inhibiting LDHB-mediated autophagic flux\",\"authors\":\"Xia Wang , Xiying Huang , Yongya Zhang , Huanhuan Huo , Guo Zhou , Linghong Shen , Long Li , Ben He\",\"doi\":\"10.1016/j.redox.2024.103456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (H<sub>2</sub>S) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear. Here, we showed that the H<sub>2</sub>S donor, NaHS suppressed DF-induced vascular remodeling in mice. Further experiments demonstrated that NaHS inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF), as well as the autophagy triggered by DF and PDGF. Mechanistically, RNA-Seq results revealed that NaHS counteracted the PDGF-induced upregulation of lactate dehydrogenase B (LDHB). Overexpression of LDHB abolished the protective effect of NaHS on DF-induced vascular remodeling. Furthermore, LDHB interacted with vacuolar-type proton ATPase catalytic subunit A (ATP6V1A), leading to lysosomal acidification, a process that was attenuated by NaHS treatment. The residues of leucine (Leu) 57 in ATP6V1A and serine (Ser) 269 in LDHB are critical for their interaction. Notably, the expression of LDHB was found to be elevated in vascular tissues from patients with abdominal aortic aneurysms (AAA) and thoracic aortic aneurysms (TAA). These data identify a molecular mechanism by which H<sub>2</sub>S attenuates DF-induced vascular remodeling by inhibiting LDHB and disrupting the interaction between LDHB and ATP6V1A, thereby impeding the autophagy process. Our findings provide insight that H<sub>2</sub>S or targeting LDHB has therapeutic potential for preventing and treating vascular remodeling.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"79 \",\"pages\":\"Article 103456\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724004348\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724004348","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (H2S) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear. Here, we showed that the H2S donor, NaHS suppressed DF-induced vascular remodeling in mice. Further experiments demonstrated that NaHS inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF), as well as the autophagy triggered by DF and PDGF. Mechanistically, RNA-Seq results revealed that NaHS counteracted the PDGF-induced upregulation of lactate dehydrogenase B (LDHB). Overexpression of LDHB abolished the protective effect of NaHS on DF-induced vascular remodeling. Furthermore, LDHB interacted with vacuolar-type proton ATPase catalytic subunit A (ATP6V1A), leading to lysosomal acidification, a process that was attenuated by NaHS treatment. The residues of leucine (Leu) 57 in ATP6V1A and serine (Ser) 269 in LDHB are critical for their interaction. Notably, the expression of LDHB was found to be elevated in vascular tissues from patients with abdominal aortic aneurysms (AAA) and thoracic aortic aneurysms (TAA). These data identify a molecular mechanism by which H2S attenuates DF-induced vascular remodeling by inhibiting LDHB and disrupting the interaction between LDHB and ATP6V1A, thereby impeding the autophagy process. Our findings provide insight that H2S or targeting LDHB has therapeutic potential for preventing and treating vascular remodeling.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.