Naoki Ikegaya, Arka N Mallela, Peter C Warnke, Nicolas G Kunigk, Fang Liu, Hunter R Schone, Ceci Verbaarschot, Nicholas G Hatsopoulos, John E Downey, Michael L Boninger, Robert Gaunt, Jennifer L Collinger, Jorge A Gonzalez-Martinez
{"title":"一种用于脑机接口研究的植入皮质内感觉运动装置的新型机器人辅助方法:原理、手术技术和挑战。","authors":"Naoki Ikegaya, Arka N Mallela, Peter C Warnke, Nicolas G Kunigk, Fang Liu, Hunter R Schone, Ceci Verbaarschot, Nicholas G Hatsopoulos, John E Downey, Michael L Boninger, Robert Gaunt, Jennifer L Collinger, Jorge A Gonzalez-Martinez","doi":"10.3171/2024.7.JNS241296","DOIUrl":null,"url":null,"abstract":"<p><p>Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI. Using this technique, the authors performed surgery in a 31-year-old male with tetraplegia due to a traumatic C4 spinal cord injury that occurred a decade earlier. Each of the arrays was embedded into the parenchyma with a single insertion without complication. Postoperative imaging verified that the devices were placed as intended. With the motor cortex arrays, the participant successfully accomplished 2D control of a virtual arm and hand, with a success rate of 20 of 20 attempts, and recording quality was maintained at 100 and 200 days postimplantation. Intracortical microstimulation of the somatosensory cortex arrays elicited sensations in the fingers and palm. A robotic neurosurgery technique was successfully translated into BCI device implantation as part of an early feasibility trial with the long-term goal of restoring upper-limb function. The technique was demonstrated to be accurate and subsequently contributed to high-quality signal communication.</p>","PeriodicalId":16505,"journal":{"name":"Journal of neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel robot-assisted method for implanting intracortical sensorimotor devices for brain-computer interface studies: principles, surgical techniques, and challenges.\",\"authors\":\"Naoki Ikegaya, Arka N Mallela, Peter C Warnke, Nicolas G Kunigk, Fang Liu, Hunter R Schone, Ceci Verbaarschot, Nicholas G Hatsopoulos, John E Downey, Michael L Boninger, Robert Gaunt, Jennifer L Collinger, Jorge A Gonzalez-Martinez\",\"doi\":\"10.3171/2024.7.JNS241296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI. Using this technique, the authors performed surgery in a 31-year-old male with tetraplegia due to a traumatic C4 spinal cord injury that occurred a decade earlier. Each of the arrays was embedded into the parenchyma with a single insertion without complication. Postoperative imaging verified that the devices were placed as intended. With the motor cortex arrays, the participant successfully accomplished 2D control of a virtual arm and hand, with a success rate of 20 of 20 attempts, and recording quality was maintained at 100 and 200 days postimplantation. Intracortical microstimulation of the somatosensory cortex arrays elicited sensations in the fingers and palm. A robotic neurosurgery technique was successfully translated into BCI device implantation as part of an early feasibility trial with the long-term goal of restoring upper-limb function. The technique was demonstrated to be accurate and subsequently contributed to high-quality signal communication.</p>\",\"PeriodicalId\":16505,\"journal\":{\"name\":\"Journal of neurosurgery\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurosurgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3171/2024.7.JNS241296\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.7.JNS241296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A novel robot-assisted method for implanting intracortical sensorimotor devices for brain-computer interface studies: principles, surgical techniques, and challenges.
Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI. Using this technique, the authors performed surgery in a 31-year-old male with tetraplegia due to a traumatic C4 spinal cord injury that occurred a decade earlier. Each of the arrays was embedded into the parenchyma with a single insertion without complication. Postoperative imaging verified that the devices were placed as intended. With the motor cortex arrays, the participant successfully accomplished 2D control of a virtual arm and hand, with a success rate of 20 of 20 attempts, and recording quality was maintained at 100 and 200 days postimplantation. Intracortical microstimulation of the somatosensory cortex arrays elicited sensations in the fingers and palm. A robotic neurosurgery technique was successfully translated into BCI device implantation as part of an early feasibility trial with the long-term goal of restoring upper-limb function. The technique was demonstrated to be accurate and subsequently contributed to high-quality signal communication.
期刊介绍:
The Journal of Neurosurgery, Journal of Neurosurgery: Spine, Journal of Neurosurgery: Pediatrics, and Neurosurgical Focus are devoted to the publication of original works relating primarily to neurosurgery, including studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology. The Editors and Editorial Boards encourage submission of clinical and laboratory studies. Other manuscripts accepted for review include technical notes on instruments or equipment that are innovative or useful to clinicians and researchers in the field of neuroscience; papers describing unusual cases; manuscripts on historical persons or events related to neurosurgery; and in Neurosurgical Focus, occasional reviews. Letters to the Editor commenting on articles recently published in the Journal of Neurosurgery, Journal of Neurosurgery: Spine, and Journal of Neurosurgery: Pediatrics are welcome.