Emma O. Erezuma-de-la-Hoz, Alejandro J. García-Cuéllar, José Luis López-Salinas
{"title":"多层结构多相系统形状图的CFD确定","authors":"Emma O. Erezuma-de-la-Hoz, Alejandro J. García-Cuéllar, José Luis López-Salinas","doi":"10.1007/s00162-024-00726-w","DOIUrl":null,"url":null,"abstract":"<p>Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (<i>Re</i>) and Bond (<i>Bo</i>) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape diagram determination of a multiphase system in stratified configuration by CFD\",\"authors\":\"Emma O. Erezuma-de-la-Hoz, Alejandro J. García-Cuéllar, José Luis López-Salinas\",\"doi\":\"10.1007/s00162-024-00726-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (<i>Re</i>) and Bond (<i>Bo</i>) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-024-00726-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-024-00726-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Shape diagram determination of a multiphase system in stratified configuration by CFD
Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (Re) and Bond (Bo) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.