关于等周黎曼彭罗斯不等式

IF 3.1 1区 数学 Q1 MATHEMATICS
Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri
{"title":"关于等周黎曼彭罗斯不等式","authors":"Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri","doi":"10.1002/cpa.22239","DOIUrl":null,"url":null,"abstract":"We prove that the Riemannian Penrose inequality holds for asymptotically flat 3‐manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the mass being a well‐defined geometric invariant. Our proof builds on a novel interplay between the Hawking mass and a potential‐theoretic version of it, recently introduced by Agostiniani, Oronzio, and the third named author. As a consequence, we establish the equality between mass and Huisken's isoperimetric mass under the above sharp assumptions. Moreover, we establish a Riemannian Penrose inequality in terms of the isoperimetric mass on any 3‐manifold with nonnegative scalar curvature, connected horizon boundary, and which supports a well‐posed notion of weak inverse mean curvature flow (IMCF). In particular, such isoperimetric Riemannian Penrose inequality does not require the asymptotic flatness of the manifold. The argument is based on a new asymptotic comparison result involving Huisken's isoperimetric mass and the Hawking mass.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"220 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the isoperimetric Riemannian Penrose inequality\",\"authors\":\"Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri\",\"doi\":\"10.1002/cpa.22239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Riemannian Penrose inequality holds for asymptotically flat 3‐manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the mass being a well‐defined geometric invariant. Our proof builds on a novel interplay between the Hawking mass and a potential‐theoretic version of it, recently introduced by Agostiniani, Oronzio, and the third named author. As a consequence, we establish the equality between mass and Huisken's isoperimetric mass under the above sharp assumptions. Moreover, we establish a Riemannian Penrose inequality in terms of the isoperimetric mass on any 3‐manifold with nonnegative scalar curvature, connected horizon boundary, and which supports a well‐posed notion of weak inverse mean curvature flow (IMCF). In particular, such isoperimetric Riemannian Penrose inequality does not require the asymptotic flatness of the manifold. The argument is based on a new asymptotic comparison result involving Huisken's isoperimetric mass and the Hawking mass.\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"220 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/cpa.22239\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22239","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了riemanian Penrose不等式对于具有非负标量曲率和连通视界的渐近平坦3 -流形成立,只要满足最优衰减假设,就可以使质量成为一个定义良好的几何不变量。我们的证明建立在霍金质量和它的潜在理论版本之间的一种新的相互作用之上,这种相互作用是最近由Agostiniani、Oronzio和第三位指定作者介绍的。因此,在上述尖锐的假设下,我们建立了质量与惠斯肯等周质量之间的等式。此外,我们在任意具有非负标量曲率、连通的水平边界的3流形上建立了一个关于等周质量的黎曼彭罗斯不等式,该不等式支持弱逆平均曲率流(IMCF)的定常概念。特别地,这种等周黎曼彭罗斯不等式不要求流形的渐近平坦性。这一论点是基于一个涉及惠斯肯等周质量和霍金质量的新的渐近比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the isoperimetric Riemannian Penrose inequality
We prove that the Riemannian Penrose inequality holds for asymptotically flat 3‐manifolds with nonnegative scalar curvature and connected horizon boundary, provided the optimal decay assumptions are met, which result in the mass being a well‐defined geometric invariant. Our proof builds on a novel interplay between the Hawking mass and a potential‐theoretic version of it, recently introduced by Agostiniani, Oronzio, and the third named author. As a consequence, we establish the equality between mass and Huisken's isoperimetric mass under the above sharp assumptions. Moreover, we establish a Riemannian Penrose inequality in terms of the isoperimetric mass on any 3‐manifold with nonnegative scalar curvature, connected horizon boundary, and which supports a well‐posed notion of weak inverse mean curvature flow (IMCF). In particular, such isoperimetric Riemannian Penrose inequality does not require the asymptotic flatness of the manifold. The argument is based on a new asymptotic comparison result involving Huisken's isoperimetric mass and the Hawking mass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信