有向图和超图上路径的持久狄拉克。

IF 1.7 Q2 MATHEMATICS, APPLIED
Faisal Suwayyid, Guo-Wei Wei
{"title":"有向图和超图上路径的持久狄拉克。","authors":"Faisal Suwayyid, Guo-Wei Wei","doi":"10.3934/fods.2024001","DOIUrl":null,"url":null,"abstract":"<p><p>This work introduces the development of path Dirac and hypergraph Dirac operators, along with an exploration of their persistence. These operators excel in distinguishing between harmonic and non-harmonic spectra, offering valuable insights into the subcomplexes within these structures. The paper showcases the functionality of these operators through a series of examples in various contexts. An essential facet of this research involves examining the operators' sensitivity to filtration, emphasizing their capacity to adapt to topological changes. The paper also explores a significant application of persistent path Dirac and persistent hypergraph Dirac in molecular science, specifically in analyzing molecular structures. The study introduces strict preorders derived from molecular structures, which generate graphs and digraphs with intricate path structures. The depth of information within these path complexes reflects the complexity of different preorder classes influenced by molecular structures. This characteristic underscores the effectiveness of these tools in the realm of topological data analysis.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"6 2","pages":"124-153"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620167/pdf/","citationCount":"0","resultStr":"{\"title\":\"PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS.\",\"authors\":\"Faisal Suwayyid, Guo-Wei Wei\",\"doi\":\"10.3934/fods.2024001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work introduces the development of path Dirac and hypergraph Dirac operators, along with an exploration of their persistence. These operators excel in distinguishing between harmonic and non-harmonic spectra, offering valuable insights into the subcomplexes within these structures. The paper showcases the functionality of these operators through a series of examples in various contexts. An essential facet of this research involves examining the operators' sensitivity to filtration, emphasizing their capacity to adapt to topological changes. The paper also explores a significant application of persistent path Dirac and persistent hypergraph Dirac in molecular science, specifically in analyzing molecular structures. The study introduces strict preorders derived from molecular structures, which generate graphs and digraphs with intricate path structures. The depth of information within these path complexes reflects the complexity of different preorder classes influenced by molecular structures. This characteristic underscores the effectiveness of these tools in the realm of topological data analysis.</p>\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"6 2\",\"pages\":\"124-153\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2024001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2024001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了路径狄拉克和超图狄拉克算子的发展,以及对它们的持久性的探索。这些算子擅长于区分谐波和非谐波光谱,为这些结构中的子复合物提供了有价值的见解。本文通过一系列不同环境下的例子展示了这些运算符的功能。本研究的一个重要方面包括检查操作员对过滤的敏感性,强调他们适应拓扑变化的能力。本文还探讨了持久路径狄拉克和持久超图狄拉克在分子科学中的重要应用,特别是在分析分子结构方面。该研究引入了来自分子结构的严格预排序,生成了具有复杂路径结构的图形和有向图。这些路径复合物内的信息深度反映了受分子结构影响的不同预序类的复杂性。这一特点强调了这些工具在拓扑数据分析领域的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS.

This work introduces the development of path Dirac and hypergraph Dirac operators, along with an exploration of their persistence. These operators excel in distinguishing between harmonic and non-harmonic spectra, offering valuable insights into the subcomplexes within these structures. The paper showcases the functionality of these operators through a series of examples in various contexts. An essential facet of this research involves examining the operators' sensitivity to filtration, emphasizing their capacity to adapt to topological changes. The paper also explores a significant application of persistent path Dirac and persistent hypergraph Dirac in molecular science, specifically in analyzing molecular structures. The study introduces strict preorders derived from molecular structures, which generate graphs and digraphs with intricate path structures. The depth of information within these path complexes reflects the complexity of different preorder classes influenced by molecular structures. This characteristic underscores the effectiveness of these tools in the realm of topological data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信