Yuichi Saito, Yuki Sugiura, Akane Sakaguchi, Tai Sada, Chihiro Nishiyama, Rae Maeda, Mari Kaneko, Hiroshi Kiyonari, Wataru Kimura
{"title":"氧化还原依赖嘌呤降解触发出生后心脏再生潜力的丧失。","authors":"Yuichi Saito, Yuki Sugiura, Akane Sakaguchi, Tai Sada, Chihiro Nishiyama, Rae Maeda, Mari Kaneko, Hiroshi Kiyonari, Wataru Kimura","doi":"10.1016/j.redox.2024.103442","DOIUrl":null,"url":null,"abstract":"<p><p>Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.</p>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"103442"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential.\",\"authors\":\"Yuichi Saito, Yuki Sugiura, Akane Sakaguchi, Tai Sada, Chihiro Nishiyama, Rae Maeda, Mari Kaneko, Hiroshi Kiyonari, Wataru Kimura\",\"doi\":\"10.1016/j.redox.2024.103442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.</p>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"79 \",\"pages\":\"103442\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.redox.2024.103442\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2024.103442","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential.
Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.