Stefan T Kaluziak, Elizabeth M Codd, Rashi Purohit, Beatrice Melli, Prinjali Kalyan, Jo Anne Fordham, Grace Kirkpatrick, Lisa M McShane, Ting-Chia Chang, Guangxiao Yang, Jinglan Wang, P Mickey Williams, Chris Karlovich, Jeffrey Sklar, A John Iafrate
{"title":"来自国家癌症研究所的驱动阴性癌症样本中基因融合的发现-用于治疗选择筛选队列的分子分析。","authors":"Stefan T Kaluziak, Elizabeth M Codd, Rashi Purohit, Beatrice Melli, Prinjali Kalyan, Jo Anne Fordham, Grace Kirkpatrick, Lisa M McShane, Ting-Chia Chang, Guangxiao Yang, Jinglan Wang, P Mickey Williams, Chris Karlovich, Jeffrey Sklar, A John Iafrate","doi":"10.1200/PO-24-00493","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial was implemented to identify actionable genetic alterations across cancer types and enroll patients accordingly onto treatment arms, irrespective of tumor histology. Using multiplex polymerase chain reaction (PCR) next-generation sequencing, NCI-MATCH genotyped 5,540 patients, discovering gene fusions in 202/5,540 tumors (3.65%). This result, substantially lower than the fusion detection prevalence of 8.5% across all patients with cancer screened at Massachusetts General Hospital's (MGH) clinical laboratories, supported reanalysis of NCI-MATCH samples identified as mutations-of-interest (MOI)-negative. The assay used by NCI-MATCH requires previous knowledge of both fusion genes, cannot detect novel fusions, and may underestimate fusion-positive patients. Anchored multiplex PCR (AMP) technology permits fusion detection with knowledge of just one gene of the fusion partners.</p><p><strong>Methods: </strong>Using AMP-based kits, we reprocessed 663 MOI-negative samples. 200 ng of RNA per sample were shipped from the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network biorepository to MGH (n = 319) and Yale University (n = 344), processed, and sequenced on the NextSeq550. Reported fusions were manually reviewed, and novel fusions orthogonally verified via reverse-transcription PCR and Sanger sequencing.</p><p><strong>Results: </strong>AMP identified 148 fusions in 142/663 MOI-negative patients (21% [95% CI, 18 to 25]), of which 28 were covered by the Oncomine Comprehensive Assay (OCA) panel but missed, while 120 were not covered by OCA. Among AMP-identified positive patients, 32 had actionable fusions, 24 contained novel fusions, and six had two fusion events. We identified fusions in 12/34 (35% [95% CI, 20 to 54]) cholangiocarcinomas and 43/109 (39% [95% CI, 30 to 49]) sarcomas.</p><p><strong>Conclusion: </strong>Technology and awareness of actionable fusions have improved since the NCI-MATCH trial. With AMP-based technology, we identified 142 patients with fusions not detected during NCI-MATCH screening, many potentially actionable. These striking data underscore the need to optimize the fusion-detection capabilities of genotyping assays used in precision medicine.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"8 ","pages":"e2400493"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of Gene Fusions in Driver-Negative Cancer Samples From the National Cancer Institute-Molecular Analysis for Therapy Choice Screening Cohort.\",\"authors\":\"Stefan T Kaluziak, Elizabeth M Codd, Rashi Purohit, Beatrice Melli, Prinjali Kalyan, Jo Anne Fordham, Grace Kirkpatrick, Lisa M McShane, Ting-Chia Chang, Guangxiao Yang, Jinglan Wang, P Mickey Williams, Chris Karlovich, Jeffrey Sklar, A John Iafrate\",\"doi\":\"10.1200/PO-24-00493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial was implemented to identify actionable genetic alterations across cancer types and enroll patients accordingly onto treatment arms, irrespective of tumor histology. Using multiplex polymerase chain reaction (PCR) next-generation sequencing, NCI-MATCH genotyped 5,540 patients, discovering gene fusions in 202/5,540 tumors (3.65%). This result, substantially lower than the fusion detection prevalence of 8.5% across all patients with cancer screened at Massachusetts General Hospital's (MGH) clinical laboratories, supported reanalysis of NCI-MATCH samples identified as mutations-of-interest (MOI)-negative. The assay used by NCI-MATCH requires previous knowledge of both fusion genes, cannot detect novel fusions, and may underestimate fusion-positive patients. Anchored multiplex PCR (AMP) technology permits fusion detection with knowledge of just one gene of the fusion partners.</p><p><strong>Methods: </strong>Using AMP-based kits, we reprocessed 663 MOI-negative samples. 200 ng of RNA per sample were shipped from the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network biorepository to MGH (n = 319) and Yale University (n = 344), processed, and sequenced on the NextSeq550. Reported fusions were manually reviewed, and novel fusions orthogonally verified via reverse-transcription PCR and Sanger sequencing.</p><p><strong>Results: </strong>AMP identified 148 fusions in 142/663 MOI-negative patients (21% [95% CI, 18 to 25]), of which 28 were covered by the Oncomine Comprehensive Assay (OCA) panel but missed, while 120 were not covered by OCA. Among AMP-identified positive patients, 32 had actionable fusions, 24 contained novel fusions, and six had two fusion events. We identified fusions in 12/34 (35% [95% CI, 20 to 54]) cholangiocarcinomas and 43/109 (39% [95% CI, 30 to 49]) sarcomas.</p><p><strong>Conclusion: </strong>Technology and awareness of actionable fusions have improved since the NCI-MATCH trial. With AMP-based technology, we identified 142 patients with fusions not detected during NCI-MATCH screening, many potentially actionable. These striking data underscore the need to optimize the fusion-detection capabilities of genotyping assays used in precision medicine.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"8 \",\"pages\":\"e2400493\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO-24-00493\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-24-00493","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Discovery of Gene Fusions in Driver-Negative Cancer Samples From the National Cancer Institute-Molecular Analysis for Therapy Choice Screening Cohort.
Purpose: The National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial was implemented to identify actionable genetic alterations across cancer types and enroll patients accordingly onto treatment arms, irrespective of tumor histology. Using multiplex polymerase chain reaction (PCR) next-generation sequencing, NCI-MATCH genotyped 5,540 patients, discovering gene fusions in 202/5,540 tumors (3.65%). This result, substantially lower than the fusion detection prevalence of 8.5% across all patients with cancer screened at Massachusetts General Hospital's (MGH) clinical laboratories, supported reanalysis of NCI-MATCH samples identified as mutations-of-interest (MOI)-negative. The assay used by NCI-MATCH requires previous knowledge of both fusion genes, cannot detect novel fusions, and may underestimate fusion-positive patients. Anchored multiplex PCR (AMP) technology permits fusion detection with knowledge of just one gene of the fusion partners.
Methods: Using AMP-based kits, we reprocessed 663 MOI-negative samples. 200 ng of RNA per sample were shipped from the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network biorepository to MGH (n = 319) and Yale University (n = 344), processed, and sequenced on the NextSeq550. Reported fusions were manually reviewed, and novel fusions orthogonally verified via reverse-transcription PCR and Sanger sequencing.
Results: AMP identified 148 fusions in 142/663 MOI-negative patients (21% [95% CI, 18 to 25]), of which 28 were covered by the Oncomine Comprehensive Assay (OCA) panel but missed, while 120 were not covered by OCA. Among AMP-identified positive patients, 32 had actionable fusions, 24 contained novel fusions, and six had two fusion events. We identified fusions in 12/34 (35% [95% CI, 20 to 54]) cholangiocarcinomas and 43/109 (39% [95% CI, 30 to 49]) sarcomas.
Conclusion: Technology and awareness of actionable fusions have improved since the NCI-MATCH trial. With AMP-based technology, we identified 142 patients with fusions not detected during NCI-MATCH screening, many potentially actionable. These striking data underscore the need to optimize the fusion-detection capabilities of genotyping assays used in precision medicine.