具有外部强迫和高阶相互作用的Kuramoto模型的分岔。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0239011
Guilherme S Costa, Marcel Novaes, Marcus A M de Aguiar
{"title":"具有外部强迫和高阶相互作用的Kuramoto模型的分岔。","authors":"Guilherme S Costa, Marcel Novaes, Marcus A M de Aguiar","doi":"10.1063/5.0239011","DOIUrl":null,"url":null,"abstract":"<p><p>Synchronization is an important phenomenon in a wide variety of systems comprising interacting oscillatory units, whether natural (like neurons, biochemical reactions, and cardiac cells) or artificial (like metronomes, power grids, and Josephson junctions). The Kuramoto model provides a simple description of these systems and has been useful in their mathematical exploration. Here, we investigate this model by combining two common features that have been observed in many systems: External periodic forcing and higher-order interactions among the elements. We show that the combination of these ingredients leads to a very rich bifurcation scenario that produces 11 different asymptotic states of the system, with competition between forced and spontaneous synchronization. We found, in particular, that saddle-node, Hopf, and homoclinic manifolds are duplicated in regions of parameter space where the unforced system displays bi-stability.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations in the Kuramoto model with external forcing and higher-order interactions.\",\"authors\":\"Guilherme S Costa, Marcel Novaes, Marcus A M de Aguiar\",\"doi\":\"10.1063/5.0239011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synchronization is an important phenomenon in a wide variety of systems comprising interacting oscillatory units, whether natural (like neurons, biochemical reactions, and cardiac cells) or artificial (like metronomes, power grids, and Josephson junctions). The Kuramoto model provides a simple description of these systems and has been useful in their mathematical exploration. Here, we investigate this model by combining two common features that have been observed in many systems: External periodic forcing and higher-order interactions among the elements. We show that the combination of these ingredients leads to a very rich bifurcation scenario that produces 11 different asymptotic states of the system, with competition between forced and spontaneous synchronization. We found, in particular, that saddle-node, Hopf, and homoclinic manifolds are duplicated in regions of parameter space where the unforced system displays bi-stability.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"34 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0239011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0239011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

同步是由相互作用的振荡单元组成的各种系统中的一个重要现象,无论是自然的(如神经元、生化反应和心脏细胞)还是人工的(如节拍器、电网和约瑟夫森连接)。Kuramoto模型为这些系统提供了一个简单的描述,并在他们的数学探索中很有用。在这里,我们通过结合在许多系统中观察到的两个共同特征来研究这个模型:外部周期强迫和元素之间的高阶相互作用。我们表明,这些成分的组合导致了一个非常丰富的分岔场景,产生了系统的11种不同的渐近状态,在强制和自发同步之间竞争。我们特别发现,鞍节点流形、Hopf流形和同斜流形在非强制系统显示双稳定性的参数空间区域中是重复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations in the Kuramoto model with external forcing and higher-order interactions.

Synchronization is an important phenomenon in a wide variety of systems comprising interacting oscillatory units, whether natural (like neurons, biochemical reactions, and cardiac cells) or artificial (like metronomes, power grids, and Josephson junctions). The Kuramoto model provides a simple description of these systems and has been useful in their mathematical exploration. Here, we investigate this model by combining two common features that have been observed in many systems: External periodic forcing and higher-order interactions among the elements. We show that the combination of these ingredients leads to a very rich bifurcation scenario that produces 11 different asymptotic states of the system, with competition between forced and spontaneous synchronization. We found, in particular, that saddle-node, Hopf, and homoclinic manifolds are duplicated in regions of parameter space where the unforced system displays bi-stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信