他汀类药物治疗的糖尿病患者测量和计算的低密度脂蛋白(LDL)胆固醇的可变性

IF 2.1 4区 医学 Q3 MEDICAL LABORATORY TECHNOLOGY
Eric S Kilpatrick, Anders Kallner, Stephen L Atkin, Thozhukat Sathyapalan
{"title":"他汀类药物治疗的糖尿病患者测量和计算的低密度脂蛋白(LDL)胆固醇的可变性","authors":"Eric S Kilpatrick, Anders Kallner, Stephen L Atkin, Thozhukat Sathyapalan","doi":"10.1177/00045632241305936","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Sampson-NIH and Martin-Hopkins low-density lipoprotein cholesterol (LDL-C) equations are advocated as being superior to the Friedewald calculation. However, their mathematical complexity means they may have different biological and analytical variation when tracking LDL-C in the same patient. This study has established the biological variation (BV) of calculated and directly measured LDL-C (dLDL-C) in patients taking equivalent doses of a long (atorvastatin) and short (simvastatin) half-life statin. It also modelled how analytical imprecision might add to these BVs.</p><p><strong>Methods: </strong>In a crossover study of lipid BV involving 26 patients with type 2 diabetes (T2DM) initially taking either simvastatin 40 mg or atorvastatin 10 mg, fasting lipids were measured 10 times over 5 weeks after a 3 month run-in. The same procedure was then followed for the alternate statin. Outlier removal and CV-ANOVA established the BV of dLDL and each formula. Analytical measurement uncertainty was estimated from 6 months of real-world data.</p><p><strong>Results: </strong>The intra-individual BV of dLDL-C measurement was considerably lower with atorvastatin than simvastatin (CV 1.3%(95% CI 1.1-1.5%) vs. 11.1%(10.2-12.2%), respectively). No equation could distinguish this difference (Friedewald 11.0%(95% CI 10.0-12.1%) vs. 12.9%(11.8-14.2%), Sampson-NIH 10.4%(9.5-11.5%) vs. 11.7% (10.7-12.8%) and Martin-Hopkins 9.3%(8.5-10.3%) vs. 11.3%(10.3-12.4%)). Real-world analytical CVs were 2.6% (Sampson-NIH), 2.6% (Martin-Hopkins) 2.8% (Friedewald) and 2.0% (dLDL-C).</p><p><strong>Conclusions: </strong>Inherent biological LDL-C variability using these formulae is substantially greater than direct measurement in T2DM patients taking atorvastatin. Typical analytical imprecision was also greater. Together, this may fundamentally limit these equations' ability to track true LDL-C changes in patients taking popular statin treatments.</p>","PeriodicalId":8005,"journal":{"name":"Annals of Clinical Biochemistry","volume":" ","pages":"45632241305936"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The variability of measured and calculated low-density lipoprotein (LDL) cholesterol in statin-treated diabetes patients.\",\"authors\":\"Eric S Kilpatrick, Anders Kallner, Stephen L Atkin, Thozhukat Sathyapalan\",\"doi\":\"10.1177/00045632241305936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Sampson-NIH and Martin-Hopkins low-density lipoprotein cholesterol (LDL-C) equations are advocated as being superior to the Friedewald calculation. However, their mathematical complexity means they may have different biological and analytical variation when tracking LDL-C in the same patient. This study has established the biological variation (BV) of calculated and directly measured LDL-C (dLDL-C) in patients taking equivalent doses of a long (atorvastatin) and short (simvastatin) half-life statin. It also modelled how analytical imprecision might add to these BVs.</p><p><strong>Methods: </strong>In a crossover study of lipid BV involving 26 patients with type 2 diabetes (T2DM) initially taking either simvastatin 40 mg or atorvastatin 10 mg, fasting lipids were measured 10 times over 5 weeks after a 3 month run-in. The same procedure was then followed for the alternate statin. Outlier removal and CV-ANOVA established the BV of dLDL and each formula. Analytical measurement uncertainty was estimated from 6 months of real-world data.</p><p><strong>Results: </strong>The intra-individual BV of dLDL-C measurement was considerably lower with atorvastatin than simvastatin (CV 1.3%(95% CI 1.1-1.5%) vs. 11.1%(10.2-12.2%), respectively). No equation could distinguish this difference (Friedewald 11.0%(95% CI 10.0-12.1%) vs. 12.9%(11.8-14.2%), Sampson-NIH 10.4%(9.5-11.5%) vs. 11.7% (10.7-12.8%) and Martin-Hopkins 9.3%(8.5-10.3%) vs. 11.3%(10.3-12.4%)). Real-world analytical CVs were 2.6% (Sampson-NIH), 2.6% (Martin-Hopkins) 2.8% (Friedewald) and 2.0% (dLDL-C).</p><p><strong>Conclusions: </strong>Inherent biological LDL-C variability using these formulae is substantially greater than direct measurement in T2DM patients taking atorvastatin. Typical analytical imprecision was also greater. Together, this may fundamentally limit these equations' ability to track true LDL-C changes in patients taking popular statin treatments.</p>\",\"PeriodicalId\":8005,\"journal\":{\"name\":\"Annals of Clinical Biochemistry\",\"volume\":\" \",\"pages\":\"45632241305936\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00045632241305936\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00045632241305936","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:Sampson-NIH和Martin-Hopkins低密度脂蛋白胆固醇(LDL-C)方程被认为优于Friedewald计算。然而,它们的数学复杂性意味着在追踪同一患者的LDL-C时,它们可能有不同的生物学和分析变异。本研究建立了在服用等量长(阿托伐他汀)和短(辛伐他汀)半衰期他汀的患者中计算和直接测量的LDL-C (dLDL-C)的生物学变异(BV)。它还模拟了分析的不精确性如何增加这些bv。方法:在一项涉及26例最初服用辛伐他汀40 mg或阿托伐他汀10 mg的2型糖尿病(T2DM)患者的脂质BV交叉研究中,在3个月的磨合后的5周内测量了10次空腹脂质。然后对另一种他汀类药物遵循相同的程序。通过异常值去除和CV-ANOVA建立了dLDL和各配方的BV。分析测量不确定度是根据6个月的实际数据估计的。结果:阿托伐他汀组dLDL-C测量的个体内BV明显低于辛伐他汀组(CV分别为1.3%(95% CI 1.1-1.5%)和11.1%(10.2-12.2%))。没有公式可以区分这种差异(Friedewald 11.0%(95% CI 10.0-12.1%) vs. 12.9%(11.8-14.2%), Sampson-NIH 10.4%(9.5-11.5%) vs. 11.7% (10.7-12.8%), Martin-Hopkins 9.3%(8.5-10.3%) vs. 11.3%(10.3-12.4%))。实际分析cv分别为2.6% (Sampson-NIH)、2.6% (Martin-Hopkins)、2.8% (Friedewald)和2.0% (dLDL-C)。结论:在服用阿托伐他汀的T2DM患者中,使用这些配方的固有生物LDL-C变异性明显大于直接测量。典型的分析不精确性也更大。总之,这可能从根本上限制了这些方程追踪接受流行他汀类药物治疗的患者真实LDL-C变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The variability of measured and calculated low-density lipoprotein (LDL) cholesterol in statin-treated diabetes patients.

Background: The Sampson-NIH and Martin-Hopkins low-density lipoprotein cholesterol (LDL-C) equations are advocated as being superior to the Friedewald calculation. However, their mathematical complexity means they may have different biological and analytical variation when tracking LDL-C in the same patient. This study has established the biological variation (BV) of calculated and directly measured LDL-C (dLDL-C) in patients taking equivalent doses of a long (atorvastatin) and short (simvastatin) half-life statin. It also modelled how analytical imprecision might add to these BVs.

Methods: In a crossover study of lipid BV involving 26 patients with type 2 diabetes (T2DM) initially taking either simvastatin 40 mg or atorvastatin 10 mg, fasting lipids were measured 10 times over 5 weeks after a 3 month run-in. The same procedure was then followed for the alternate statin. Outlier removal and CV-ANOVA established the BV of dLDL and each formula. Analytical measurement uncertainty was estimated from 6 months of real-world data.

Results: The intra-individual BV of dLDL-C measurement was considerably lower with atorvastatin than simvastatin (CV 1.3%(95% CI 1.1-1.5%) vs. 11.1%(10.2-12.2%), respectively). No equation could distinguish this difference (Friedewald 11.0%(95% CI 10.0-12.1%) vs. 12.9%(11.8-14.2%), Sampson-NIH 10.4%(9.5-11.5%) vs. 11.7% (10.7-12.8%) and Martin-Hopkins 9.3%(8.5-10.3%) vs. 11.3%(10.3-12.4%)). Real-world analytical CVs were 2.6% (Sampson-NIH), 2.6% (Martin-Hopkins) 2.8% (Friedewald) and 2.0% (dLDL-C).

Conclusions: Inherent biological LDL-C variability using these formulae is substantially greater than direct measurement in T2DM patients taking atorvastatin. Typical analytical imprecision was also greater. Together, this may fundamentally limit these equations' ability to track true LDL-C changes in patients taking popular statin treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Clinical Biochemistry
Annals of Clinical Biochemistry Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
5.20
自引率
4.50%
发文量
61
期刊介绍: Annals of Clinical Biochemistry is the fully peer reviewed international journal of the Association for Clinical Biochemistry and Laboratory Medicine. Annals of Clinical Biochemistry accepts papers that contribute to knowledge in all fields of laboratory medicine, especially those pertaining to the understanding, diagnosis and treatment of human disease. It publishes papers on clinical biochemistry, clinical audit, metabolic medicine, immunology, genetics, biotechnology, haematology, microbiology, computing and management where they have both biochemical and clinical relevance. Papers describing evaluation or implementation of commercial reagent kits or the performance of new analysers require substantial original information. Unless of exceptional interest and novelty, studies dealing with the redox status in various diseases are not generally considered within the journal''s scope. Studies documenting the association of single nucleotide polymorphisms (SNPs) with particular phenotypes will not normally be considered, given the greater strength of genome wide association studies (GWAS). Research undertaken in non-human animals will not be considered for publication in the Annals. Annals of Clinical Biochemistry is also the official journal of NVKC (de Nederlandse Vereniging voor Klinische Chemie) and JSCC (Japan Society of Clinical Chemistry).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信