Vanessa L. Porter, Michelle Ng, Kieran O'Neill, Signe MacLennan, Richard D. Corbett, Luka Culibrk, Zeid Hamadeh, Marissa Iden, Rachel Schmidt, Shirng-Wern Tsaih, Carolyn Nakisige, Martin Origa, Jackson Orem, Glenn Chang, Jeremy Fan, Ka Ming Nip, Vahid Akbari, Simon K. Chan, James Hopkins, Richard A. Moore, Eric Chuah, Karen L. Mungall, Andrew J. Mungall, Inanc Birol, Steven J.M. Jones, Janet S. Rader, Marco A. Marra
{"title":"人乳头瘤病毒整合事件中病毒和人类基因组的重排及其等位基因特异性对癌症基因组调控的影响","authors":"Vanessa L. Porter, Michelle Ng, Kieran O'Neill, Signe MacLennan, Richard D. Corbett, Luka Culibrk, Zeid Hamadeh, Marissa Iden, Rachel Schmidt, Shirng-Wern Tsaih, Carolyn Nakisige, Martin Origa, Jackson Orem, Glenn Chang, Jeremy Fan, Ka Ming Nip, Vahid Akbari, Simon K. Chan, James Hopkins, Richard A. Moore, Eric Chuah, Karen L. Mungall, Andrew J. Mungall, Inanc Birol, Steven J.M. Jones, Janet S. Rader, Marco A. Marra","doi":"10.1101/gr.279041.124","DOIUrl":null,"url":null,"abstract":"Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore long-read sequencing on 72 cervical cancer genomes from an Ugandan dataset that was previously characterized using short-read sequencing. We found recurrent structural rearrangement patterns at HPV integration events, which we categorized as: del(etion)-like, dup(lication)-like, translocation, multibreakpoint, or repeat region integrations. Integrations involving amplified HPV-human concatemers, particularly multibreakpoint events, frequently harbored heterogeneous forms and copy numbers of the viral genome. Transcriptionally active integrants were characterized by unmethylated regions in both the viral and human genomes downstream from the viral transcription start site, resulting in HPV-human fusion transcripts. In contrast, integrants without evidence of expression lacked consistent methylation patterns. Furthermore, whereas transcriptional dysregulation was limited to genes within 200 kilobases of an HPV integrant, dysregulation of the human epigenome in the form of allelic differentially methylated regions affected megabase expanses of the genome, irrespective of the integrant's transcriptional status. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"68 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangements of viral and human genomes at human papillomavirus integration events and their allele-specific impacts on cancer genome regulation\",\"authors\":\"Vanessa L. Porter, Michelle Ng, Kieran O'Neill, Signe MacLennan, Richard D. Corbett, Luka Culibrk, Zeid Hamadeh, Marissa Iden, Rachel Schmidt, Shirng-Wern Tsaih, Carolyn Nakisige, Martin Origa, Jackson Orem, Glenn Chang, Jeremy Fan, Ka Ming Nip, Vahid Akbari, Simon K. Chan, James Hopkins, Richard A. Moore, Eric Chuah, Karen L. Mungall, Andrew J. Mungall, Inanc Birol, Steven J.M. Jones, Janet S. Rader, Marco A. Marra\",\"doi\":\"10.1101/gr.279041.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore long-read sequencing on 72 cervical cancer genomes from an Ugandan dataset that was previously characterized using short-read sequencing. We found recurrent structural rearrangement patterns at HPV integration events, which we categorized as: del(etion)-like, dup(lication)-like, translocation, multibreakpoint, or repeat region integrations. Integrations involving amplified HPV-human concatemers, particularly multibreakpoint events, frequently harbored heterogeneous forms and copy numbers of the viral genome. Transcriptionally active integrants were characterized by unmethylated regions in both the viral and human genomes downstream from the viral transcription start site, resulting in HPV-human fusion transcripts. In contrast, integrants without evidence of expression lacked consistent methylation patterns. Furthermore, whereas transcriptional dysregulation was limited to genes within 200 kilobases of an HPV integrant, dysregulation of the human epigenome in the form of allelic differentially methylated regions affected megabase expanses of the genome, irrespective of the integrant's transcriptional status. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279041.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279041.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rearrangements of viral and human genomes at human papillomavirus integration events and their allele-specific impacts on cancer genome regulation
Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore long-read sequencing on 72 cervical cancer genomes from an Ugandan dataset that was previously characterized using short-read sequencing. We found recurrent structural rearrangement patterns at HPV integration events, which we categorized as: del(etion)-like, dup(lication)-like, translocation, multibreakpoint, or repeat region integrations. Integrations involving amplified HPV-human concatemers, particularly multibreakpoint events, frequently harbored heterogeneous forms and copy numbers of the viral genome. Transcriptionally active integrants were characterized by unmethylated regions in both the viral and human genomes downstream from the viral transcription start site, resulting in HPV-human fusion transcripts. In contrast, integrants without evidence of expression lacked consistent methylation patterns. Furthermore, whereas transcriptional dysregulation was limited to genes within 200 kilobases of an HPV integrant, dysregulation of the human epigenome in the form of allelic differentially methylated regions affected megabase expanses of the genome, irrespective of the integrant's transcriptional status. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.