各向异性EM图像中亚细胞超微结构的再各向同性分割

Jinyue Guo;Zejin Wang;Hao Zhai;Yanchao Zhang;Jing Liu;Hua Han
{"title":"各向异性EM图像中亚细胞超微结构的再各向同性分割","authors":"Jinyue Guo;Zejin Wang;Hao Zhai;Yanchao Zhang;Jing Liu;Hua Han","doi":"10.1109/TMI.2024.3511599","DOIUrl":null,"url":null,"abstract":"Despite advances in ultrathin cutting, serial sections in electron microscopy (EM) still exhibit noticeable anisotropy, with much lower z-axis resolution compared with the other two axes. As a result, the imaged biovolume suffers from low connectivity smoothness in contextual structures, which makes the subcellular ultrastructural segmentation challenging. The recent 2.5D hybrid convolutions allow the direct learning of asymmetric semantics from anisotropic features. However, plain representations without the isotropic scale prior limit the performance of the upper bound. This paper presents a novel framework, referred to as ReIsoSeg, which aims at incorporating an isotropic scaling prior into anisotropic biovolumes. More precisely, ReIsoSeg consists of an anisotropic primary encoder, a pseudo-isotropic auxiliary module, and a weight-shared decoder. The auxiliary module implicitly deforms the anisotropic features from the primary encoder to align with the isotropic prior. The re-isotropic loss squeezes the pseudo-isotropic representations into the anisotropic space to reuse the anisotropic labels. The shared decoder ensures that the outputs of the anisotropic encoder converge towards the isotropic representations. During the inference process, the auxiliary module is excluded. Comprehensive experiments were conducted on the AC3/AC4, CREMI, and MitoEM subcellular ultrastructure datasets. The obtained results demonstrate the high performance of the proposed ReIsoSeg.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1624-1635"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-Isotropic Segmentation for Subcellular Ultrastructure in Anisotropic EM Images\",\"authors\":\"Jinyue Guo;Zejin Wang;Hao Zhai;Yanchao Zhang;Jing Liu;Hua Han\",\"doi\":\"10.1109/TMI.2024.3511599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite advances in ultrathin cutting, serial sections in electron microscopy (EM) still exhibit noticeable anisotropy, with much lower z-axis resolution compared with the other two axes. As a result, the imaged biovolume suffers from low connectivity smoothness in contextual structures, which makes the subcellular ultrastructural segmentation challenging. The recent 2.5D hybrid convolutions allow the direct learning of asymmetric semantics from anisotropic features. However, plain representations without the isotropic scale prior limit the performance of the upper bound. This paper presents a novel framework, referred to as ReIsoSeg, which aims at incorporating an isotropic scaling prior into anisotropic biovolumes. More precisely, ReIsoSeg consists of an anisotropic primary encoder, a pseudo-isotropic auxiliary module, and a weight-shared decoder. The auxiliary module implicitly deforms the anisotropic features from the primary encoder to align with the isotropic prior. The re-isotropic loss squeezes the pseudo-isotropic representations into the anisotropic space to reuse the anisotropic labels. The shared decoder ensures that the outputs of the anisotropic encoder converge towards the isotropic representations. During the inference process, the auxiliary module is excluded. Comprehensive experiments were conducted on the AC3/AC4, CREMI, and MitoEM subcellular ultrastructure datasets. The obtained results demonstrate the high performance of the proposed ReIsoSeg.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 4\",\"pages\":\"1624-1635\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10778623/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10778623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管在超薄切割方面取得了进展,但电子显微镜(EM)中的连续切片仍然表现出明显的各向异性,与其他两个轴相比,z轴分辨率要低得多。因此,成像的生物体积在上下文结构中存在低连接平滑性,这使得亚细胞超微结构分割具有挑战性。最近的2.5D混合卷积允许从各向异性特征中直接学习非对称语义。然而,没有各向同性尺度的朴素表示限制了上界的性能。本文提出了一个新的框架,称为ReIsoSeg,其目的是将各向同性尺度纳入各向异性生物体积。更准确地说,ReIsoSeg由各向异性主编码器、伪各向同性辅助模块和权重共享解码器组成。辅助模块隐式地变形主编码器的各向异性特征以与各向同性先验对齐。重各向同性损失将伪各向同性表示压缩到各向异性空间中以重用各向异性标签。共享解码器确保各向异性编码器的输出收敛于各向同性表示。在推理过程中,辅助模块被排除在外。对AC3/AC4、CREMI和MitoEM亚细胞超微结构数据集进行了综合实验。实验结果表明,所提出的ReIsoSeg具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-Isotropic Segmentation for Subcellular Ultrastructure in Anisotropic EM Images
Despite advances in ultrathin cutting, serial sections in electron microscopy (EM) still exhibit noticeable anisotropy, with much lower z-axis resolution compared with the other two axes. As a result, the imaged biovolume suffers from low connectivity smoothness in contextual structures, which makes the subcellular ultrastructural segmentation challenging. The recent 2.5D hybrid convolutions allow the direct learning of asymmetric semantics from anisotropic features. However, plain representations without the isotropic scale prior limit the performance of the upper bound. This paper presents a novel framework, referred to as ReIsoSeg, which aims at incorporating an isotropic scaling prior into anisotropic biovolumes. More precisely, ReIsoSeg consists of an anisotropic primary encoder, a pseudo-isotropic auxiliary module, and a weight-shared decoder. The auxiliary module implicitly deforms the anisotropic features from the primary encoder to align with the isotropic prior. The re-isotropic loss squeezes the pseudo-isotropic representations into the anisotropic space to reuse the anisotropic labels. The shared decoder ensures that the outputs of the anisotropic encoder converge towards the isotropic representations. During the inference process, the auxiliary module is excluded. Comprehensive experiments were conducted on the AC3/AC4, CREMI, and MitoEM subcellular ultrastructure datasets. The obtained results demonstrate the high performance of the proposed ReIsoSeg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信