通过系统优化扩增偏倚,建立准确定量伪狂犬病毒的双链ddpcr检测方法。

Virology Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI:10.1016/j.virol.2024.110311
Zihan Tian, Hao Wu, Rong Xu, Lun Yao, Wentao Li, Qigai He
{"title":"通过系统优化扩增偏倚,建立准确定量伪狂犬病毒的双链ddpcr检测方法。","authors":"Zihan Tian, Hao Wu, Rong Xu, Lun Yao, Wentao Li, Qigai He","doi":"10.1016/j.virol.2024.110311","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudorabies (PR), caused by the pseudorabies virus (PRV), is highly contagious. Although qPCR is widely used for viral DNA detection, it struggles with low-level DNA identification and precise quantification. To address these issues, droplet digital PCR (ddPCR) has emerged as a more advanced method for detecting pathogens and providing absolute quantification of nucleic acids. The study introduces a ddPCR assay for accurate PRV quantification, addressing the challenges posed by the high GC content of the PRV genome. By optimizing factors such as primer and probe concentrations, annealing conditions, denaturation time, and cycle number, the assay overcomes limitations of traditional PCR techniques. The optimized ddPCR assay showed a wide linear dynamic range, with well-defined limits of blank (LOB) and detection (LOD). Testing confirmed the method's reproducibility, demonstrating its stability and reliability. This study provides key insights into optimizing ddPCR for GC-rich templates and serves as a useful reference for future experiments.</p>","PeriodicalId":94266,"journal":{"name":"Virology","volume":"602 ","pages":"110311"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Duplex-ddPCR assay for accurate quantification of pseudorabies virus through systematic optimization of amplification bias.\",\"authors\":\"Zihan Tian, Hao Wu, Rong Xu, Lun Yao, Wentao Li, Qigai He\",\"doi\":\"10.1016/j.virol.2024.110311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pseudorabies (PR), caused by the pseudorabies virus (PRV), is highly contagious. Although qPCR is widely used for viral DNA detection, it struggles with low-level DNA identification and precise quantification. To address these issues, droplet digital PCR (ddPCR) has emerged as a more advanced method for detecting pathogens and providing absolute quantification of nucleic acids. The study introduces a ddPCR assay for accurate PRV quantification, addressing the challenges posed by the high GC content of the PRV genome. By optimizing factors such as primer and probe concentrations, annealing conditions, denaturation time, and cycle number, the assay overcomes limitations of traditional PCR techniques. The optimized ddPCR assay showed a wide linear dynamic range, with well-defined limits of blank (LOB) and detection (LOD). Testing confirmed the method's reproducibility, demonstrating its stability and reliability. This study provides key insights into optimizing ddPCR for GC-rich templates and serves as a useful reference for future experiments.</p>\",\"PeriodicalId\":94266,\"journal\":{\"name\":\"Virology\",\"volume\":\"602 \",\"pages\":\"110311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.virol.2024.110311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.virol.2024.110311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伪狂犬病是由伪狂犬病病毒(PRV)引起的,具有高度传染性。虽然qPCR被广泛用于病毒DNA检测,但它在低水平DNA鉴定和精确定量方面存在困难。为了解决这些问题,液滴数字PCR (ddPCR)作为一种更先进的检测病原体和提供核酸绝对定量的方法出现了。该研究引入了一种精确定量PRV的ddPCR方法,解决了PRV基因组高GC含量带来的挑战。通过优化引物和探针浓度、退火条件、变性时间和循环次数等因素,该实验克服了传统PCR技术的局限性。优化后的ddPCR检测具有较宽的线性动态范围,具有明确的空白限(LOB)和检测限(LOD)。实验证实了该方法的重复性,证明了该方法的稳定性和可靠性。本研究为优化富gc模板的ddPCR提供了关键见解,并为今后的实验提供了有用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Duplex-ddPCR assay for accurate quantification of pseudorabies virus through systematic optimization of amplification bias.

Pseudorabies (PR), caused by the pseudorabies virus (PRV), is highly contagious. Although qPCR is widely used for viral DNA detection, it struggles with low-level DNA identification and precise quantification. To address these issues, droplet digital PCR (ddPCR) has emerged as a more advanced method for detecting pathogens and providing absolute quantification of nucleic acids. The study introduces a ddPCR assay for accurate PRV quantification, addressing the challenges posed by the high GC content of the PRV genome. By optimizing factors such as primer and probe concentrations, annealing conditions, denaturation time, and cycle number, the assay overcomes limitations of traditional PCR techniques. The optimized ddPCR assay showed a wide linear dynamic range, with well-defined limits of blank (LOB) and detection (LOD). Testing confirmed the method's reproducibility, demonstrating its stability and reliability. This study provides key insights into optimizing ddPCR for GC-rich templates and serves as a useful reference for future experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信