Waseem , Sabir Ali , Aatif Ali , Adel Thaljaoui , Mutum Zico Meetei
{"title":"基于无监督随机神经网络范式的传染病动力学数学模型。","authors":"Waseem , Sabir Ali , Aatif Ali , Adel Thaljaoui , Mutum Zico Meetei","doi":"10.1016/j.compbiolchem.2024.108291","DOIUrl":null,"url":null,"abstract":"<div><div>The viruses has spread globally and have been impacted lives of people socially and economically, which causes immense suffering throughout the world. Thousands of people died and millions of illnesses were brought, by the outbreak worldwide. In order to control the coronavirus pandemic, mathematical modeling proved to be an invaluable tool for analyzing and determining the potential and severity of the illness. This work proposed and assessed a deterministic six-compartment model with a novel stochastic neural network. The significance of the proposed model was demonstrated by numerical simulation in which the results are agreed with sensitivity analysis. Furthermore, the efficacy of stochastic neural network has been proven with the help of numerical simulations. Some investigations have been conducted through graphs and tables that how the vaccination process is helpful to minimize stress in society. The numerical simulations also focused on preventing the community-wide spread of the disease. The lowest residual errors have been achieved by our proposed stochastic neural network and compared with numerical solvers to assess the accuracy and robustness of the proposed approach.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108291"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of infectious disease mathematical model through unsupervised stochastic neural network paradigm\",\"authors\":\"Waseem , Sabir Ali , Aatif Ali , Adel Thaljaoui , Mutum Zico Meetei\",\"doi\":\"10.1016/j.compbiolchem.2024.108291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The viruses has spread globally and have been impacted lives of people socially and economically, which causes immense suffering throughout the world. Thousands of people died and millions of illnesses were brought, by the outbreak worldwide. In order to control the coronavirus pandemic, mathematical modeling proved to be an invaluable tool for analyzing and determining the potential and severity of the illness. This work proposed and assessed a deterministic six-compartment model with a novel stochastic neural network. The significance of the proposed model was demonstrated by numerical simulation in which the results are agreed with sensitivity analysis. Furthermore, the efficacy of stochastic neural network has been proven with the help of numerical simulations. Some investigations have been conducted through graphs and tables that how the vaccination process is helpful to minimize stress in society. The numerical simulations also focused on preventing the community-wide spread of the disease. The lowest residual errors have been achieved by our proposed stochastic neural network and compared with numerical solvers to assess the accuracy and robustness of the proposed approach.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108291\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002792\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Dynamics of infectious disease mathematical model through unsupervised stochastic neural network paradigm
The viruses has spread globally and have been impacted lives of people socially and economically, which causes immense suffering throughout the world. Thousands of people died and millions of illnesses were brought, by the outbreak worldwide. In order to control the coronavirus pandemic, mathematical modeling proved to be an invaluable tool for analyzing and determining the potential and severity of the illness. This work proposed and assessed a deterministic six-compartment model with a novel stochastic neural network. The significance of the proposed model was demonstrated by numerical simulation in which the results are agreed with sensitivity analysis. Furthermore, the efficacy of stochastic neural network has been proven with the help of numerical simulations. Some investigations have been conducted through graphs and tables that how the vaccination process is helpful to minimize stress in society. The numerical simulations also focused on preventing the community-wide spread of the disease. The lowest residual errors have been achieved by our proposed stochastic neural network and compared with numerical solvers to assess the accuracy and robustness of the proposed approach.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.