利用MRI图像检测脑肿瘤的高效网络- dbnealexnet混合型。

IF 2.6 4区 生物学 Q2 BIOLOGY
Vasavi G. , Vaddadi Vasudha Rani , Sreenu Ponnada , Jyothi S.
{"title":"利用MRI图像检测脑肿瘤的高效网络- dbnealexnet混合型。","authors":"Vasavi G. ,&nbsp;Vaddadi Vasudha Rani ,&nbsp;Sreenu Ponnada ,&nbsp;Jyothi S.","doi":"10.1016/j.compbiolchem.2024.108279","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108279"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images\",\"authors\":\"Vasavi G. ,&nbsp;Vaddadi Vasudha Rani ,&nbsp;Sreenu Ponnada ,&nbsp;Jyothi S.\",\"doi\":\"10.1016/j.compbiolchem.2024.108279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108279\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002676\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002676","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大脑中异常细胞的快速生长对人类的健康构成严重威胁,因为它可能导致死亡。由于这些肿瘤具有不同的形状、大小和位置,因此识别脑肿瘤(BTs)具有挑战性。磁共振成像(MRI)是诊断恶性肿瘤最常用的方法。本文提出了一种新的bt检测方法——高效网-深度批处理归一化eLUAlexnet (EfficientNet-DbneAlexnet)。首先对输入的MRI图像进行传输,进行图像增强。在这里,图像通过分段线性变换(PLT)增强。然后,利用模糊局部信息均值(FLICM)进行颅骨剥离。随后,在投影对抗网络(PAN)的帮助下,对图像中的肿瘤区域进行分割。将分割后的图像应用于特征提取模块,提取纹理特征、统计特征等特征。最后,利用高效网络和深度批处理归一化eLUAlexnet (DbneAlexnet)融合而成的高效网络-DbneAlexnet完成BT检测。结果表明,该方法的灵敏度为90.36 %,准确度为92.77 %,特异度为91.82 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images
The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信