在学习神经网络波函数的同时教授自旋对称。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yongle Li, Yuhao Chen, Xiao He
{"title":"在学习神经网络波函数的同时教授自旋对称。","authors":"Yongle Li, Yuhao Chen, Xiao He","doi":"10.1038/s43588-024-00727-z","DOIUrl":null,"url":null,"abstract":"By developing an efficient spin symmetry penalty, a recent study has substantially accelerated the calculation of accurate energies with correct spin states in variational Monte Carlo for both ground and excited states of quantum many-particle systems.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"884-885"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teaching spin symmetry while learning neural network wave functions\",\"authors\":\"Yongle Li, Yuhao Chen, Xiao He\",\"doi\":\"10.1038/s43588-024-00727-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By developing an efficient spin symmetry penalty, a recent study has substantially accelerated the calculation of accurate energies with correct spin states in variational Monte Carlo for both ground and excited states of quantum many-particle systems.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 12\",\"pages\":\"884-885\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00727-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00727-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过开发一种有效的自旋对称惩罚,最近的一项研究大大加快了量子多粒子系统的基态和激发态的变分蒙特卡洛精确能量的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Teaching spin symmetry while learning neural network wave functions

Teaching spin symmetry while learning neural network wave functions
By developing an efficient spin symmetry penalty, a recent study has substantially accelerated the calculation of accurate energies with correct spin states in variational Monte Carlo for both ground and excited states of quantum many-particle systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信