单细胞数据的深度学习训练动态分析。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"单细胞数据的深度学习训练动态分析。","authors":"","doi":"10.1038/s43588-024-00728-y","DOIUrl":null,"url":null,"abstract":"Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"886-887"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning training dynamics analysis for single-cell data\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00728-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 12\",\"pages\":\"886-887\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00728-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00728-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

受最近自然语言处理和计算机视觉方法的启发,我们开发了Annotatability,这是一个分析深度神经网络训练动态以解释预注释单细胞和空间组学数据的框架。可注释性识别错误的注释和模糊的细胞状态,从二元标签推断轨迹,并揭示潜在的生物信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning training dynamics analysis for single-cell data

Deep learning training dynamics analysis for single-cell data
Inspired by recent approaches for natural language processing and computer vision, we developed Annotatability, a framework that analyzes deep neural network training dynamics to interpret pre-annotated single-cell and spatial omics data. Annotatability identified erroneous annotations and ambiguous cell states, inferred trajectories from binary labels, and revealed underlying biological signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信