毛杨外显子破坏变异与木材特性相关,表现出不同的基因表达模式。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Plant Genome Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI:10.1002/tpg2.20541
Anthony Piot, Yousry A El-Kassaby, Ilga Porth
{"title":"毛杨外显子破坏变异与木材特性相关,表现出不同的基因表达模式。","authors":"Anthony Piot, Yousry A El-Kassaby, Ilga Porth","doi":"10.1002/tpg2.20541","DOIUrl":null,"url":null,"abstract":"<p><p>Forest trees may harbor naturally occurring exon disruptive variants (DVs) in their gene sequences, which potentially impact important ecological and economic phenotypic traits. However, the abundance and molecular regulation of these variants remain largely unexplored. Here, 24,420 DVs were identified by screening 1014 Populus trichocarpa full genomes. The identified DVs were predominantly heterozygous with allelic frequencies below 5% (only 26% of DVs had frequencies greater than 5%). Using common garden-grown trees, DVs were assessed for gene expression variation in the developing xylem, revealing that their gene expression can be significantly altered, particularly for homozygous DVs (in the range of 27%-38% of cases depending on the studied common garden). DVs were further investigated for their correlations with 13 wood quality traits, revealing that, among the 148 discovered DV associations, 15 correlated with more than one wood property and six genes had more than one DV in their coding sequences associated with wood traits. Approximately one-third of DVs correlated with wood property variation also showed significant gene expression variation, confirming their non-spurious impact. These findings offer potential avenues for targeted introduction of homozygous mutations using tree biotechnology, and while the exact mechanisms by which DVs may directly influence wood formation remain to be unraveled, this study lays the groundwork for further investigation.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20541"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exon disruptive variants in Populus trichocarpa associated with wood properties exhibit distinct gene expression patterns.\",\"authors\":\"Anthony Piot, Yousry A El-Kassaby, Ilga Porth\",\"doi\":\"10.1002/tpg2.20541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Forest trees may harbor naturally occurring exon disruptive variants (DVs) in their gene sequences, which potentially impact important ecological and economic phenotypic traits. However, the abundance and molecular regulation of these variants remain largely unexplored. Here, 24,420 DVs were identified by screening 1014 Populus trichocarpa full genomes. The identified DVs were predominantly heterozygous with allelic frequencies below 5% (only 26% of DVs had frequencies greater than 5%). Using common garden-grown trees, DVs were assessed for gene expression variation in the developing xylem, revealing that their gene expression can be significantly altered, particularly for homozygous DVs (in the range of 27%-38% of cases depending on the studied common garden). DVs were further investigated for their correlations with 13 wood quality traits, revealing that, among the 148 discovered DV associations, 15 correlated with more than one wood property and six genes had more than one DV in their coding sequences associated with wood traits. Approximately one-third of DVs correlated with wood property variation also showed significant gene expression variation, confirming their non-spurious impact. These findings offer potential avenues for targeted introduction of homozygous mutations using tree biotechnology, and while the exact mechanisms by which DVs may directly influence wood formation remain to be unraveled, this study lays the groundwork for further investigation.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":\" \",\"pages\":\"e20541\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

森林树木可能在其基因序列中存在自然发生的外显子破坏变异(DVs),这可能会影响重要的生态和经济表型性状。然而,这些变异的丰度和分子调控在很大程度上仍未被探索。本研究通过筛选1014个毛杨全基因组,共鉴定出24420个DVs。所鉴定的DVs主要是杂合的,等位基因频率低于5%(只有26%的DVs频率大于5%)。利用普通园林树木,对发育中的木质部的基因表达变化进行了评估,发现它们的基因表达可以显著改变,特别是纯合子的DVs(根据所研究的普通园林,在27%-38%的范围内)。结果表明,在发现的148个DV相关基因中,有15个与1个以上木材性状相关,6个基因与木材性状相关的编码序列中含有1个以上DV。与木材性能变化相关的约三分之一的DVs也显示出显著的基因表达变化,证实了它们的非虚假影响。这些发现为利用树木生物技术有针对性地引入纯合突变提供了潜在的途径,尽管DVs可能直接影响木材形成的确切机制仍有待阐明,但本研究为进一步研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exon disruptive variants in Populus trichocarpa associated with wood properties exhibit distinct gene expression patterns.

Forest trees may harbor naturally occurring exon disruptive variants (DVs) in their gene sequences, which potentially impact important ecological and economic phenotypic traits. However, the abundance and molecular regulation of these variants remain largely unexplored. Here, 24,420 DVs were identified by screening 1014 Populus trichocarpa full genomes. The identified DVs were predominantly heterozygous with allelic frequencies below 5% (only 26% of DVs had frequencies greater than 5%). Using common garden-grown trees, DVs were assessed for gene expression variation in the developing xylem, revealing that their gene expression can be significantly altered, particularly for homozygous DVs (in the range of 27%-38% of cases depending on the studied common garden). DVs were further investigated for their correlations with 13 wood quality traits, revealing that, among the 148 discovered DV associations, 15 correlated with more than one wood property and six genes had more than one DV in their coding sequences associated with wood traits. Approximately one-third of DVs correlated with wood property variation also showed significant gene expression variation, confirming their non-spurious impact. These findings offer potential avenues for targeted introduction of homozygous mutations using tree biotechnology, and while the exact mechanisms by which DVs may directly influence wood formation remain to be unraveled, this study lays the groundwork for further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信