Qiuhong Duan, Wei Wang, Hua Xiong, Juanjuan Xiao, Han Xiao, Feng Zhu, Hui Lu
{"title":"JAK2/ULK1轴通过自噬诱导和SRPK1磷酸化促进宫颈癌进展。","authors":"Qiuhong Duan, Wei Wang, Hua Xiong, Juanjuan Xiao, Han Xiao, Feng Zhu, Hui Lu","doi":"10.1038/s41388-024-03246-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer is the most common gynecologic cancer. Autophagy is involved in the progression of CCa. ULK1 is a crucial kinase in autophagy initiation. However, few studies have investigated the role of ULK1 phosphorylation at tyrosine residues in the progression of CCa, and the underlying mechanism remains elusive. In this study, we demonstrated that JAK2 is a novel upstream kinase that phosphorylates ULK1 at the tyrosine site. JAK2 interacts with and phosphorylates ULK1 at Tyr1007. The phosphorylation of ULK1 at Y1007 increases its activity and stability, activates autophagy, and promotes the progression of CCa. We further showed that the phosphorylation of ULK1 at Y1007 is a predictive marker of CCa patient outcome. Furthermore, we identified SRPK1 as a potential downstream substrate of ULK1 to promote the progression of CCa. Our research sheds light on the molecular mechanism of CCa progression, through JAK2/ULK1 axis, and emphasizes the phosphorylation of ULK1 at Y1007 as a predictor of CCa.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JAK2/ULK1 axis promotes cervical cancer progression by autophagy induction and SRPK1 phosphorylation.\",\"authors\":\"Qiuhong Duan, Wei Wang, Hua Xiong, Juanjuan Xiao, Han Xiao, Feng Zhu, Hui Lu\",\"doi\":\"10.1038/s41388-024-03246-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cervical cancer is the most common gynecologic cancer. Autophagy is involved in the progression of CCa. ULK1 is a crucial kinase in autophagy initiation. However, few studies have investigated the role of ULK1 phosphorylation at tyrosine residues in the progression of CCa, and the underlying mechanism remains elusive. In this study, we demonstrated that JAK2 is a novel upstream kinase that phosphorylates ULK1 at the tyrosine site. JAK2 interacts with and phosphorylates ULK1 at Tyr1007. The phosphorylation of ULK1 at Y1007 increases its activity and stability, activates autophagy, and promotes the progression of CCa. We further showed that the phosphorylation of ULK1 at Y1007 is a predictive marker of CCa patient outcome. Furthermore, we identified SRPK1 as a potential downstream substrate of ULK1 to promote the progression of CCa. Our research sheds light on the molecular mechanism of CCa progression, through JAK2/ULK1 axis, and emphasizes the phosphorylation of ULK1 at Y1007 as a predictor of CCa.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-024-03246-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03246-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
JAK2/ULK1 axis promotes cervical cancer progression by autophagy induction and SRPK1 phosphorylation.
Cervical cancer is the most common gynecologic cancer. Autophagy is involved in the progression of CCa. ULK1 is a crucial kinase in autophagy initiation. However, few studies have investigated the role of ULK1 phosphorylation at tyrosine residues in the progression of CCa, and the underlying mechanism remains elusive. In this study, we demonstrated that JAK2 is a novel upstream kinase that phosphorylates ULK1 at the tyrosine site. JAK2 interacts with and phosphorylates ULK1 at Tyr1007. The phosphorylation of ULK1 at Y1007 increases its activity and stability, activates autophagy, and promotes the progression of CCa. We further showed that the phosphorylation of ULK1 at Y1007 is a predictive marker of CCa patient outcome. Furthermore, we identified SRPK1 as a potential downstream substrate of ULK1 to promote the progression of CCa. Our research sheds light on the molecular mechanism of CCa progression, through JAK2/ULK1 axis, and emphasizes the phosphorylation of ULK1 at Y1007 as a predictor of CCa.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.