铣削过程中表面粗糙度估计的声学数据集。

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-11-04 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111108
N R Sakthivel, Josmin Cherian, Binoy B Nair, Abburu Sahasransu, L N V Pratap Aratipamula, Singamsetty Anish Gupta
{"title":"铣削过程中表面粗糙度估计的声学数据集。","authors":"N R Sakthivel, Josmin Cherian, Binoy B Nair, Abburu Sahasransu, L N V Pratap Aratipamula, Singamsetty Anish Gupta","doi":"10.1016/j.dib.2024.111108","DOIUrl":null,"url":null,"abstract":"<p><p>Machining process involves numerous variables that can influence the desired outcomes, with surface roughness being a critical quality index for machined products. Surface roughness is often a technical requirement for mechanical products as it can lead to chatter and impact the functional performance of parts, especially those in contact with other materials. Therefore, predicting surface roughness is essential. This dataset comprises 7444 audio files containing acoustic signal samples recorded using a 44.1 kHz microphone during the milling of mild steel with a tungsten carbide tool on a BFW YF1 vertical milling machine. Various combinations of speed, feed and depth of cut were used, and surface roughness values measured using a Carl Zeiss E-35B profile-meter are provided for each combination. Additionally, an example workflow indicating the possible use of the data to estimate the surface roughness from the acoustic signals is presented. This dataset is the first publicly available resource for surface roughness measurement using sound signals in milling, offering significant potential for reuse in related research and applications.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111108"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615534/pdf/","citationCount":"0","resultStr":"{\"title\":\"An acoustic dataset for surface roughness estimation in milling process.\",\"authors\":\"N R Sakthivel, Josmin Cherian, Binoy B Nair, Abburu Sahasransu, L N V Pratap Aratipamula, Singamsetty Anish Gupta\",\"doi\":\"10.1016/j.dib.2024.111108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machining process involves numerous variables that can influence the desired outcomes, with surface roughness being a critical quality index for machined products. Surface roughness is often a technical requirement for mechanical products as it can lead to chatter and impact the functional performance of parts, especially those in contact with other materials. Therefore, predicting surface roughness is essential. This dataset comprises 7444 audio files containing acoustic signal samples recorded using a 44.1 kHz microphone during the milling of mild steel with a tungsten carbide tool on a BFW YF1 vertical milling machine. Various combinations of speed, feed and depth of cut were used, and surface roughness values measured using a Carl Zeiss E-35B profile-meter are provided for each combination. Additionally, an example workflow indicating the possible use of the data to estimate the surface roughness from the acoustic signals is presented. This dataset is the first publicly available resource for surface roughness measurement using sound signals in milling, offering significant potential for reuse in related research and applications.</p>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"57 \",\"pages\":\"111108\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615534/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dib.2024.111108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

加工过程涉及许多变量,这些变量可以影响期望的结果,表面粗糙度是加工产品的关键质量指标。表面粗糙度通常是机械产品的技术要求,因为它可能导致颤振并影响部件的功能性能,特别是那些与其他材料接触的部件。因此,预测表面粗糙度是必不可少的。该数据集包括7444个音频文件,其中包含在BFW YF1立式铣床上使用碳化钨刀具铣削低碳钢时使用44.1 kHz麦克风录制的声音信号样本。使用了速度,进给量和切割深度的各种组合,并为每种组合提供了使用卡尔蔡司E-35B轮廓仪测量的表面粗糙度值。此外,还提供了一个示例工作流,说明了从声学信号中使用数据估计表面粗糙度的可能性。该数据集是第一个在铣削过程中使用声音信号进行表面粗糙度测量的公开资源,为相关研究和应用的重复使用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An acoustic dataset for surface roughness estimation in milling process.

Machining process involves numerous variables that can influence the desired outcomes, with surface roughness being a critical quality index for machined products. Surface roughness is often a technical requirement for mechanical products as it can lead to chatter and impact the functional performance of parts, especially those in contact with other materials. Therefore, predicting surface roughness is essential. This dataset comprises 7444 audio files containing acoustic signal samples recorded using a 44.1 kHz microphone during the milling of mild steel with a tungsten carbide tool on a BFW YF1 vertical milling machine. Various combinations of speed, feed and depth of cut were used, and surface roughness values measured using a Carl Zeiss E-35B profile-meter are provided for each combination. Additionally, an example workflow indicating the possible use of the data to estimate the surface roughness from the acoustic signals is presented. This dataset is the first publicly available resource for surface roughness measurement using sound signals in milling, offering significant potential for reuse in related research and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信