Shujing Feng, Hao Zhou, Xingzuan Lin, Siyuan Zhu, Huifang Chen, Han Zhou, Ru Wang, Peng Wang, Xiexiang Shao, Jianhua Wang
{"title":"运动通过调节mett13介导的肌卫星细胞MyoD的m6A甲基化促进青少年骨骼肌生长。","authors":"Shujing Feng, Hao Zhou, Xingzuan Lin, Siyuan Zhu, Huifang Chen, Han Zhou, Ru Wang, Peng Wang, Xiexiang Shao, Jianhua Wang","doi":"10.1186/s11658-024-00670-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exercise exerts positive impacts on skeletal muscle health and homeostasis. Emerging evidence suggests that m6A methylation is involved in various physiological processes. However, the impact of exercise on adolescent skeletal muscle growth and the underlying epigenetic mechanisms remain poorly understood.</p><p><strong>Methods: </strong>The lower-limb skeletal muscles were harvested from exercise and control groups to compare the skeletal muscle growth in adolescents. mRNA sequencing was conducted to explore the mechanisms underlying enhanced skeletal muscle growth following exercise. The effects and mechanisms of Mettl3-mediated m6A methylation on adolescent skeletal muscle growth were investigated using muscle satellite cell (MuSC)-specific Mettl3 knockout (KO) mice. The potential function of MyoD for skeletal muscle growth in adolescents was explored by phenotypes after overexpression and evaluation of in vivo myogenesis. Additionally, the effects of the methyl donor betaine on adolescent skeletal muscle growth were investigated in vitro and in vivo.</p><p><strong>Results: </strong>Exercise could promote skeletal muscle growth in adolescents. Sequencing data analysis and confirmation assays uncovered that exercise significantly increased Mettl3-mediated m6A methylation and elevated the expression levels of activation marker MyoD in MuSCs. Establishment of MuSC-specific Mettl3 KO mice further demonstrated that Mettl3-mediated m6A methylation in MyoD contributed to skeletal muscle growth during adolescence. Mettl3-mediated m6A methylation regulated MyoD mRNA stability at the posttranscriptional level in MuSCs, with a functional site at 234 bp A. Increased expression of MyoD could contribute to myogenesis of adolescent MuSCs. Furthermore, the methyl donor betaine could enhance MyoD expression, contributing to MuSCs activation and skeletal muscle growth in adolescents by boosting m6A methylation levels.</p><p><strong>Conclusions: </strong>Exercise promoted skeletal muscle growth in adolescents through facilitating MyoD mRNA stability of MuSCs in a Mettl3-mediated m6A-dependent manner. The methyl donor betaine could be a potential alternative to exercise for promoting adolescent skeletal muscle growth by directly augmenting the global levels of m6A methylation. These findings may provide a theoretical foundation for encouraging daily fitness exercise and ensuring healthy growth in adolescents.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"150"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exercise promotes skeletal muscle growth in adolescents via modulating Mettl3-mediated m6A methylation of MyoD in muscle satellite cells.\",\"authors\":\"Shujing Feng, Hao Zhou, Xingzuan Lin, Siyuan Zhu, Huifang Chen, Han Zhou, Ru Wang, Peng Wang, Xiexiang Shao, Jianhua Wang\",\"doi\":\"10.1186/s11658-024-00670-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Exercise exerts positive impacts on skeletal muscle health and homeostasis. Emerging evidence suggests that m6A methylation is involved in various physiological processes. However, the impact of exercise on adolescent skeletal muscle growth and the underlying epigenetic mechanisms remain poorly understood.</p><p><strong>Methods: </strong>The lower-limb skeletal muscles were harvested from exercise and control groups to compare the skeletal muscle growth in adolescents. mRNA sequencing was conducted to explore the mechanisms underlying enhanced skeletal muscle growth following exercise. The effects and mechanisms of Mettl3-mediated m6A methylation on adolescent skeletal muscle growth were investigated using muscle satellite cell (MuSC)-specific Mettl3 knockout (KO) mice. The potential function of MyoD for skeletal muscle growth in adolescents was explored by phenotypes after overexpression and evaluation of in vivo myogenesis. Additionally, the effects of the methyl donor betaine on adolescent skeletal muscle growth were investigated in vitro and in vivo.</p><p><strong>Results: </strong>Exercise could promote skeletal muscle growth in adolescents. Sequencing data analysis and confirmation assays uncovered that exercise significantly increased Mettl3-mediated m6A methylation and elevated the expression levels of activation marker MyoD in MuSCs. Establishment of MuSC-specific Mettl3 KO mice further demonstrated that Mettl3-mediated m6A methylation in MyoD contributed to skeletal muscle growth during adolescence. Mettl3-mediated m6A methylation regulated MyoD mRNA stability at the posttranscriptional level in MuSCs, with a functional site at 234 bp A. Increased expression of MyoD could contribute to myogenesis of adolescent MuSCs. Furthermore, the methyl donor betaine could enhance MyoD expression, contributing to MuSCs activation and skeletal muscle growth in adolescents by boosting m6A methylation levels.</p><p><strong>Conclusions: </strong>Exercise promoted skeletal muscle growth in adolescents through facilitating MyoD mRNA stability of MuSCs in a Mettl3-mediated m6A-dependent manner. The methyl donor betaine could be a potential alternative to exercise for promoting adolescent skeletal muscle growth by directly augmenting the global levels of m6A methylation. These findings may provide a theoretical foundation for encouraging daily fitness exercise and ensuring healthy growth in adolescents.</p>\",\"PeriodicalId\":9688,\"journal\":{\"name\":\"Cellular & Molecular Biology Letters\",\"volume\":\"29 1\",\"pages\":\"150\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & Molecular Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s11658-024-00670-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00670-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:运动对骨骼肌健康和体内平衡有积极影响。新出现的证据表明m6A甲基化参与多种生理过程。然而,运动对青少年骨骼肌生长的影响及其潜在的表观遗传机制仍然知之甚少。方法:选取运动组和对照组的下肢骨骼肌,比较青少年骨骼肌的生长情况。进行mRNA测序以探索运动后骨骼肌生长增强的机制。利用肌肉卫星细胞(MuSC)特异性Mettl3敲除(KO)小鼠研究了Mettl3介导的m6A甲基化对青少年骨骼肌生长的影响及其机制。MyoD在青少年骨骼肌生长中的潜在功能是通过过度表达和体内肌发生评估后的表型来探索的。此外,还研究了甲基甜菜碱对青少年骨骼肌生长的体外和体内影响。结果:运动对青少年骨骼肌生长有促进作用。测序数据分析和确认分析发现,运动显著增加了mettl3介导的m6A甲基化,并提高了musc中活化标记物MyoD的表达水平。musc特异性Mettl3 KO小鼠的建立进一步证明,MyoD中Mettl3介导的m6A甲基化有助于青春期骨骼肌的生长。在musc中,mett13介导的m6A甲基化在转录后水平调控MyoD mRNA的稳定性,其功能位点位于234 bp a。MyoD的表达增加可能有助于青少年musc的肌肉形成。此外,甲基供体甜菜碱可以增强MyoD的表达,通过提高m6A甲基化水平,促进青少年musc的激活和骨骼肌的生长。结论:运动以mett13介导的m6a依赖的方式促进骨骼肌细胞MyoD mRNA的稳定性,从而促进青少年骨骼肌的生长。甲基供体甜菜碱可能是一种潜在的替代运动,通过直接增加m6A甲基化的全球水平来促进青少年骨骼肌生长。这些发现可能为鼓励青少年日常健身锻炼和确保青少年健康成长提供理论基础。
Exercise promotes skeletal muscle growth in adolescents via modulating Mettl3-mediated m6A methylation of MyoD in muscle satellite cells.
Background: Exercise exerts positive impacts on skeletal muscle health and homeostasis. Emerging evidence suggests that m6A methylation is involved in various physiological processes. However, the impact of exercise on adolescent skeletal muscle growth and the underlying epigenetic mechanisms remain poorly understood.
Methods: The lower-limb skeletal muscles were harvested from exercise and control groups to compare the skeletal muscle growth in adolescents. mRNA sequencing was conducted to explore the mechanisms underlying enhanced skeletal muscle growth following exercise. The effects and mechanisms of Mettl3-mediated m6A methylation on adolescent skeletal muscle growth were investigated using muscle satellite cell (MuSC)-specific Mettl3 knockout (KO) mice. The potential function of MyoD for skeletal muscle growth in adolescents was explored by phenotypes after overexpression and evaluation of in vivo myogenesis. Additionally, the effects of the methyl donor betaine on adolescent skeletal muscle growth were investigated in vitro and in vivo.
Results: Exercise could promote skeletal muscle growth in adolescents. Sequencing data analysis and confirmation assays uncovered that exercise significantly increased Mettl3-mediated m6A methylation and elevated the expression levels of activation marker MyoD in MuSCs. Establishment of MuSC-specific Mettl3 KO mice further demonstrated that Mettl3-mediated m6A methylation in MyoD contributed to skeletal muscle growth during adolescence. Mettl3-mediated m6A methylation regulated MyoD mRNA stability at the posttranscriptional level in MuSCs, with a functional site at 234 bp A. Increased expression of MyoD could contribute to myogenesis of adolescent MuSCs. Furthermore, the methyl donor betaine could enhance MyoD expression, contributing to MuSCs activation and skeletal muscle growth in adolescents by boosting m6A methylation levels.
Conclusions: Exercise promoted skeletal muscle growth in adolescents through facilitating MyoD mRNA stability of MuSCs in a Mettl3-mediated m6A-dependent manner. The methyl donor betaine could be a potential alternative to exercise for promoting adolescent skeletal muscle growth by directly augmenting the global levels of m6A methylation. These findings may provide a theoretical foundation for encouraging daily fitness exercise and ensuring healthy growth in adolescents.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.