原位工程Ce2O2S/CeO2纳米纤维异质结用于s -方案电荷分离光催化H2O2合成。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-11-30 DOI:10.1016/j.jcis.2024.11.232
Yuan Lin, Ying Wang, Ziying Feng, Yunyun Gui, Lijun Liu
{"title":"原位工程Ce2O2S/CeO2纳米纤维异质结用于s -方案电荷分离光催化H2O2合成。","authors":"Yuan Lin, Ying Wang, Ziying Feng, Yunyun Gui, Lijun Liu","doi":"10.1016/j.jcis.2024.11.232","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis offers an efficient and sustainable means to convert solar energy into chemical energy, representing a forefront and focal point in photocatalysis. S-scheme heterojunctions demonstrate the capability to effectively separate photogenerated electrons and holes while possessing strong oxidation and reduction abilities, rendering them potential catalysts for photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis. However, designing S-scheme heterojunction photocatalysts with band alignment and close contact remains challenging. Here we report Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> multiphase nanofibrous prepared via an in situ sulphuration/de-sulphuration strategy. This in situ process enables intimate contact between the two phases, thereby shortening the charge transfer distance and promoting charge separation. The interfacial electronic interaction and charge separation were investigated using in situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The work function difference enables Ce<sub>2</sub>O<sub>2</sub>S to donate electrons to CeO<sub>2</sub> upon combination, resulting in the formation of an internal electric field (IEF) at interfaces. This IEF, along with bent energy bands, facilitates the separation and transfer of photogenerated charge carriers via an S-scheme pathway across the Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> interfaces. The Ce<sub>2</sub>O<sub>2</sub>S as the reduction photocatalyst exhibits significant O<sub>2</sub> adsorption and activation along with a low energy barrier for the H<sub>2</sub>O<sub>2</sub> production. The optimal Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> nanofibers heterojunction demonstrate enhanced photocatalytic H<sub>2</sub>O<sub>2</sub> production of 2.91 mmol g<sup>-1</sup>h<sup>-1</sup>, 58 times higher than that of pristine CeO<sub>2</sub> nanofibers. This investigation provides valuable insights for the rational design and preparation of intimate contact nanofibrous heterojunctions with efficient solar H<sub>2</sub>O<sub>2</sub> synthesis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"381-391"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ engineered Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> nanofibrous heterojunctions for photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis via S-scheme charge separation.\",\"authors\":\"Yuan Lin, Ying Wang, Ziying Feng, Yunyun Gui, Lijun Liu\",\"doi\":\"10.1016/j.jcis.2024.11.232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis offers an efficient and sustainable means to convert solar energy into chemical energy, representing a forefront and focal point in photocatalysis. S-scheme heterojunctions demonstrate the capability to effectively separate photogenerated electrons and holes while possessing strong oxidation and reduction abilities, rendering them potential catalysts for photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis. However, designing S-scheme heterojunction photocatalysts with band alignment and close contact remains challenging. Here we report Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> multiphase nanofibrous prepared via an in situ sulphuration/de-sulphuration strategy. This in situ process enables intimate contact between the two phases, thereby shortening the charge transfer distance and promoting charge separation. The interfacial electronic interaction and charge separation were investigated using in situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The work function difference enables Ce<sub>2</sub>O<sub>2</sub>S to donate electrons to CeO<sub>2</sub> upon combination, resulting in the formation of an internal electric field (IEF) at interfaces. This IEF, along with bent energy bands, facilitates the separation and transfer of photogenerated charge carriers via an S-scheme pathway across the Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> interfaces. The Ce<sub>2</sub>O<sub>2</sub>S as the reduction photocatalyst exhibits significant O<sub>2</sub> adsorption and activation along with a low energy barrier for the H<sub>2</sub>O<sub>2</sub> production. The optimal Ce<sub>2</sub>O<sub>2</sub>S/CeO<sub>2</sub> nanofibers heterojunction demonstrate enhanced photocatalytic H<sub>2</sub>O<sub>2</sub> production of 2.91 mmol g<sup>-1</sup>h<sup>-1</sup>, 58 times higher than that of pristine CeO<sub>2</sub> nanofibers. This investigation provides valuable insights for the rational design and preparation of intimate contact nanofibrous heterojunctions with efficient solar H<sub>2</sub>O<sub>2</sub> synthesis.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"682 \",\"pages\":\"381-391\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.11.232\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化H2O2合成为太阳能转化为化学能提供了一种高效、可持续的手段,是光催化领域的前沿和焦点。s型异质结不仅能有效分离光生电子和空穴,还具有较强的氧化还原能力,是光催化合成H2O2的潜在催化剂。然而,设计具有带取向和紧密接触的s型异质结光催化剂仍然具有挑战性。在这里,我们报道了通过原位硫化/脱硫化策略制备Ce2O2S/CeO2多相纳米纤维。这种原位过程使两相之间紧密接触,从而缩短了电荷转移距离,促进了电荷分离。利用原位x射线光电子能谱(XPS)和密度泛函理论(DFT)对界面电子相互作用和电荷分离进行了研究。功函数的差异使Ce2O2S在结合时向CeO2提供电子,从而在界面处形成内部电场(IEF)。这种IEF与弯曲能带一起,通过S-scheme途径在Ce2O2S/CeO2界面上促进光生电荷载流子的分离和转移。Ce2O2S作为还原性光催化剂表现出明显的O2吸附和活化作用,并具有较低的产H2O2能垒。最佳Ce2O2S/CeO2纳米纤维异质结的光催化H2O2产率为2.91 mmol g-1h-1,是原始CeO2纳米纤维的58倍。该研究为合理设计和制备具有高效太阳能H2O2合成的亲密接触纳米纤维异质结提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ engineered Ce2O2S/CeO2 nanofibrous heterojunctions for photocatalytic H2O2 synthesis via S-scheme charge separation.

Photocatalytic H2O2 synthesis offers an efficient and sustainable means to convert solar energy into chemical energy, representing a forefront and focal point in photocatalysis. S-scheme heterojunctions demonstrate the capability to effectively separate photogenerated electrons and holes while possessing strong oxidation and reduction abilities, rendering them potential catalysts for photocatalytic H2O2 synthesis. However, designing S-scheme heterojunction photocatalysts with band alignment and close contact remains challenging. Here we report Ce2O2S/CeO2 multiphase nanofibrous prepared via an in situ sulphuration/de-sulphuration strategy. This in situ process enables intimate contact between the two phases, thereby shortening the charge transfer distance and promoting charge separation. The interfacial electronic interaction and charge separation were investigated using in situ X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The work function difference enables Ce2O2S to donate electrons to CeO2 upon combination, resulting in the formation of an internal electric field (IEF) at interfaces. This IEF, along with bent energy bands, facilitates the separation and transfer of photogenerated charge carriers via an S-scheme pathway across the Ce2O2S/CeO2 interfaces. The Ce2O2S as the reduction photocatalyst exhibits significant O2 adsorption and activation along with a low energy barrier for the H2O2 production. The optimal Ce2O2S/CeO2 nanofibers heterojunction demonstrate enhanced photocatalytic H2O2 production of 2.91 mmol g-1h-1, 58 times higher than that of pristine CeO2 nanofibers. This investigation provides valuable insights for the rational design and preparation of intimate contact nanofibrous heterojunctions with efficient solar H2O2 synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信