用给定的预期的巨大组件构建一个随机网络

Q2 Mathematics
Lorenzo Federico, Ayoub Mounim
{"title":"用给定的预期的巨大组件构建一个随机网络","authors":"Lorenzo Federico,&nbsp;Ayoub Mounim","doi":"10.1007/s11565-024-00575-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we show that given any integer-valued random variable <i>D</i> with finite mean such that <span>\\(\\mathbb {E}[D]&gt;2\\)</span> and <span>\\(\\mathbb {P}(D\\ge 1)=1\\)</span>, it is possible to build a configuration model whose giant component has degree distribution that converges in probability to <i>D</i> and give a way to compute the starting degree distribution to achieve this property.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a random network with a given expected giant component\",\"authors\":\"Lorenzo Federico,&nbsp;Ayoub Mounim\",\"doi\":\"10.1007/s11565-024-00575-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we show that given any integer-valued random variable <i>D</i> with finite mean such that <span>\\\\(\\\\mathbb {E}[D]&gt;2\\\\)</span> and <span>\\\\(\\\\mathbb {P}(D\\\\ge 1)=1\\\\)</span>, it is possible to build a configuration model whose giant component has degree distribution that converges in probability to <i>D</i> and give a way to compute the starting degree distribution to achieve this property.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00575-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00575-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了给定任何具有有限均值的整数随机变量D,例如\(\mathbb {E}[D]>2\)和\(\mathbb {P}(D\ge 1)=1\),可以建立一个配置模型,其巨大分量具有概率收敛于D的度分布,并给出了计算初始度分布的方法来实现这一性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building a random network with a given expected giant component

In this work we show that given any integer-valued random variable D with finite mean such that \(\mathbb {E}[D]>2\) and \(\mathbb {P}(D\ge 1)=1\), it is possible to build a configuration model whose giant component has degree distribution that converges in probability to D and give a way to compute the starting degree distribution to achieve this property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信