一种用于声源定位的通用直接路径IPD估计网络

IF 4.1 2区 计算机科学 Q1 ACOUSTICS
Yabo Wang;Bing Yang;Xiaofei Li
{"title":"一种用于声源定位的通用直接路径IPD估计网络","authors":"Yabo Wang;Bing Yang;Xiaofei Li","doi":"10.1109/TASLP.2024.3507560","DOIUrl":null,"url":null,"abstract":"Extracting direct-path spatial feature is crucial for sound source localization in adverse acoustic environments. This paper proposes IPDnet, a neural network that estimates direct-path inter-channel phase difference (DP-IPD) of sound sources from microphone array signals. The estimated DP-IPD can be easily translated to source location based on the known microphone array geometry. First, a full-band and narrow-band fusion network is adopted for DP-IPD estimation, in which combined narrow-band and full-band layers are responsible for estimating the raw DP-IPD information in one frequency band and capturing the frequency correlations of DP-IPD, respectively. Second, a new multi-track DP-IPD learning target is proposed for the localization of a flexible number of sound sources. Third, the network is extended to handle variable microphone arrays. This version of IPDnet is trained with a large set of different microphone arrays, and then it is able to infer the source locations using new microphone arrays not seen at training time. Experiments with multiple number of moving speakers are conducted on both simulated and real-world data, which show that the full-band and narrow-band fusion network and the proposed multi-track DP-IPD learning target together achieve excellent sound source localization performance. Moreover, the proposed variable-array model generalizes well to unseen microphone arrays.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"5051-5064"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IPDnet: A Universal Direct-Path IPD Estimation Network for Sound Source Localization\",\"authors\":\"Yabo Wang;Bing Yang;Xiaofei Li\",\"doi\":\"10.1109/TASLP.2024.3507560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting direct-path spatial feature is crucial for sound source localization in adverse acoustic environments. This paper proposes IPDnet, a neural network that estimates direct-path inter-channel phase difference (DP-IPD) of sound sources from microphone array signals. The estimated DP-IPD can be easily translated to source location based on the known microphone array geometry. First, a full-band and narrow-band fusion network is adopted for DP-IPD estimation, in which combined narrow-band and full-band layers are responsible for estimating the raw DP-IPD information in one frequency band and capturing the frequency correlations of DP-IPD, respectively. Second, a new multi-track DP-IPD learning target is proposed for the localization of a flexible number of sound sources. Third, the network is extended to handle variable microphone arrays. This version of IPDnet is trained with a large set of different microphone arrays, and then it is able to infer the source locations using new microphone arrays not seen at training time. Experiments with multiple number of moving speakers are conducted on both simulated and real-world data, which show that the full-band and narrow-band fusion network and the proposed multi-track DP-IPD learning target together achieve excellent sound source localization performance. Moreover, the proposed variable-array model generalizes well to unseen microphone arrays.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"5051-5064\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10771699/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10771699/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在不利声环境下,直接路径空间特征的提取是声源定位的关键。本文提出了一种基于麦克风阵列信号估计声源直接路径信道间相位差(DP-IPD)的神经网络IPDnet。估计的DP-IPD可以根据已知的麦克风阵列几何形状很容易地转换为源位置。首先,采用全频带和窄带融合网络进行DP-IPD估计,其中窄带和全频带联合层分别负责估计一个频带的DP-IPD原始信息和捕获DP-IPD的频率相关性。其次,提出了一种新的多轨道DP-IPD学习目标,用于定位灵活数量的声源。第三,将网络扩展到处理可变麦克风阵列。这个版本的IPDnet使用大量不同的麦克风阵列进行训练,然后它能够使用训练时未见的新麦克风阵列推断源位置。在模拟和现实数据上进行了多运动扬声器的实验,结果表明,全频带和窄带融合网络以及所提出的多轨DP-IPD学习目标共同实现了良好的声源定位性能。此外,所提出的可变阵列模型可以很好地推广到隐形麦克风阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IPDnet: A Universal Direct-Path IPD Estimation Network for Sound Source Localization
Extracting direct-path spatial feature is crucial for sound source localization in adverse acoustic environments. This paper proposes IPDnet, a neural network that estimates direct-path inter-channel phase difference (DP-IPD) of sound sources from microphone array signals. The estimated DP-IPD can be easily translated to source location based on the known microphone array geometry. First, a full-band and narrow-band fusion network is adopted for DP-IPD estimation, in which combined narrow-band and full-band layers are responsible for estimating the raw DP-IPD information in one frequency band and capturing the frequency correlations of DP-IPD, respectively. Second, a new multi-track DP-IPD learning target is proposed for the localization of a flexible number of sound sources. Third, the network is extended to handle variable microphone arrays. This version of IPDnet is trained with a large set of different microphone arrays, and then it is able to infer the source locations using new microphone arrays not seen at training time. Experiments with multiple number of moving speakers are conducted on both simulated and real-world data, which show that the full-band and narrow-band fusion network and the proposed multi-track DP-IPD learning target together achieve excellent sound source localization performance. Moreover, the proposed variable-array model generalizes well to unseen microphone arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信