MO-Transformer:用于神经机器翻译的词间高级关系提取

IF 4.1 2区 计算机科学 Q1 ACOUSTICS
Sufeng Duan;Hai Zhao
{"title":"MO-Transformer:用于神经机器翻译的词间高级关系提取","authors":"Sufeng Duan;Hai Zhao","doi":"10.1109/TASLP.2024.3507556","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an explanation of representation for self-attention network (SAN) based neural sequence encoders, which regards the information captured by the model and the encoding of the model as graph structure and the generation of these graph structures respectively. The proposed explanation applies to existing works on SAN-based models and can explain the relationship among the ability to capture the structural or linguistic information, depth of model, and length of sentence, and can also be extended to other models such as recurrent neural network based models. We also propose a revisited multigraph called Multi-order-Graph (MoG) based on our explanation to model the graph structures in the SAN-based model as subgraphs in MoG and convert the encoding of the SAN-based model to the generation of MoG. Based on our explanation, we further introduce an MO-Transformer by enhancing the ability to capture multiple subgraphs of different orders and focusing on subgraphs of high orders. Experimental results on multiple neural machine translation tasks show that the MO-Transformer can yield effective performance improvement.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"5065-5077"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MO-Transformer: Extract High-Level Relationship Between Words for Neural Machine Translation\",\"authors\":\"Sufeng Duan;Hai Zhao\",\"doi\":\"10.1109/TASLP.2024.3507556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an explanation of representation for self-attention network (SAN) based neural sequence encoders, which regards the information captured by the model and the encoding of the model as graph structure and the generation of these graph structures respectively. The proposed explanation applies to existing works on SAN-based models and can explain the relationship among the ability to capture the structural or linguistic information, depth of model, and length of sentence, and can also be extended to other models such as recurrent neural network based models. We also propose a revisited multigraph called Multi-order-Graph (MoG) based on our explanation to model the graph structures in the SAN-based model as subgraphs in MoG and convert the encoding of the SAN-based model to the generation of MoG. Based on our explanation, we further introduce an MO-Transformer by enhancing the ability to capture multiple subgraphs of different orders and focusing on subgraphs of high orders. Experimental results on multiple neural machine translation tasks show that the MO-Transformer can yield effective performance improvement.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"5065-5077\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768979/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10768979/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自注意网络(SAN)的神经序列编码器的表示解释,将模型捕获的信息和模型的编码分别视为图结构和图结构的生成。所提出的解释适用于基于san的模型的现有工作,可以解释捕获结构或语言信息的能力、模型深度和句子长度之间的关系,也可以扩展到其他模型,如基于循环神经网络的模型。在此基础上,我们提出了一种被称为多阶图(Multi-order-Graph, MoG)的多重图,将基于san的模型中的图结构建模为MoG中的子图,并将基于san的模型的编码转换为MoG的生成。根据我们的解释,我们通过增强捕获不同阶的多个子图的能力并专注于高阶子图,进一步介绍了MO-Transformer。在多个神经网络机器翻译任务上的实验结果表明,MO-Transformer可以有效地提高机器翻译的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MO-Transformer: Extract High-Level Relationship Between Words for Neural Machine Translation
In this paper, we propose an explanation of representation for self-attention network (SAN) based neural sequence encoders, which regards the information captured by the model and the encoding of the model as graph structure and the generation of these graph structures respectively. The proposed explanation applies to existing works on SAN-based models and can explain the relationship among the ability to capture the structural or linguistic information, depth of model, and length of sentence, and can also be extended to other models such as recurrent neural network based models. We also propose a revisited multigraph called Multi-order-Graph (MoG) based on our explanation to model the graph structures in the SAN-based model as subgraphs in MoG and convert the encoding of the SAN-based model to the generation of MoG. Based on our explanation, we further introduce an MO-Transformer by enhancing the ability to capture multiple subgraphs of different orders and focusing on subgraphs of high orders. Experimental results on multiple neural machine translation tasks show that the MO-Transformer can yield effective performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信