二维磁体-超导体杂化结构拓扑量子门模拟

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jasmin Bedow, Eric Mascot, Themba Hodge, Stephan Rachel, Dirk K. Morr
{"title":"二维磁体-超导体杂化结构拓扑量子门模拟","authors":"Jasmin Bedow, Eric Mascot, Themba Hodge, Stephan Rachel, Dirk K. Morr","doi":"10.1038/s41535-024-00703-w","DOIUrl":null,"url":null,"abstract":"<p>The creation of topological quantum gates using Majorana zero modes—an outstanding problem in the field of topological quantum computing—relies on our ability to control the braiding process in time and space. Here, we propose two-dimensional magnet-superconductor hybrid structures as a new platform for the successful implementation of topologically protected <span>\\(\\sqrt{{\\sigma }_{z}}\\)</span>-, <i>σ</i><sub><i>z</i></sub>- and <i>σ</i><sub><i>x</i></sub>-quantum gates using Majorana zero modes. Employing a novel theoretical formalism to compute the full time-dependent many-body wave-function and utilizing a braiding protocol motivated by recent advances in electron-spin-resonance techniques we simulate quantum gates in 2D systems up to 600 sites, on timescales from a few femto- to nanoseconds. We demonstrate that the braiding process can be visualized in time and space by computing the non-equilibrium local density of states, which is proportional to the time-dependent differential conductance measured in scanning tunneling spectroscopy experiments, allowing us to directly image Majorana world lines.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"95 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating topological quantum gates in two-dimensional magnet-superconductor hybrid structures\",\"authors\":\"Jasmin Bedow, Eric Mascot, Themba Hodge, Stephan Rachel, Dirk K. Morr\",\"doi\":\"10.1038/s41535-024-00703-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The creation of topological quantum gates using Majorana zero modes—an outstanding problem in the field of topological quantum computing—relies on our ability to control the braiding process in time and space. Here, we propose two-dimensional magnet-superconductor hybrid structures as a new platform for the successful implementation of topologically protected <span>\\\\(\\\\sqrt{{\\\\sigma }_{z}}\\\\)</span>-, <i>σ</i><sub><i>z</i></sub>- and <i>σ</i><sub><i>x</i></sub>-quantum gates using Majorana zero modes. Employing a novel theoretical formalism to compute the full time-dependent many-body wave-function and utilizing a braiding protocol motivated by recent advances in electron-spin-resonance techniques we simulate quantum gates in 2D systems up to 600 sites, on timescales from a few femto- to nanoseconds. We demonstrate that the braiding process can be visualized in time and space by computing the non-equilibrium local density of states, which is proportional to the time-dependent differential conductance measured in scanning tunneling spectroscopy experiments, allowing us to directly image Majorana world lines.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00703-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00703-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用马约拉纳零模式创建拓扑量子门是拓扑量子计算领域的一个突出问题,它依赖于我们在时间和空间上控制编织过程的能力。在这里,我们提出了二维磁体-超导体混合结构作为一个新的平台,用于使用Majorana零模式成功实现拓扑保护的\(\sqrt{{\sigma }_{z}}\) -, σz-和σx量子门。采用一种新的理论形式来计算完全依赖于时间的多体波函数,并利用电子自旋共振技术的最新进展所激发的编织协议,我们在从几飞秒到纳秒的时间尺度上模拟了二维系统中多达600个位点的量子门。我们证明了编织过程可以通过计算非平衡态的局部密度在时间和空间上可视化,这与扫描隧道光谱实验中测量的随时间变化的差分电导成正比,使我们能够直接成像马约拉纳世界线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulating topological quantum gates in two-dimensional magnet-superconductor hybrid structures

Simulating topological quantum gates in two-dimensional magnet-superconductor hybrid structures

The creation of topological quantum gates using Majorana zero modes—an outstanding problem in the field of topological quantum computing—relies on our ability to control the braiding process in time and space. Here, we propose two-dimensional magnet-superconductor hybrid structures as a new platform for the successful implementation of topologically protected \(\sqrt{{\sigma }_{z}}\)-, σz- and σx-quantum gates using Majorana zero modes. Employing a novel theoretical formalism to compute the full time-dependent many-body wave-function and utilizing a braiding protocol motivated by recent advances in electron-spin-resonance techniques we simulate quantum gates in 2D systems up to 600 sites, on timescales from a few femto- to nanoseconds. We demonstrate that the braiding process can be visualized in time and space by computing the non-equilibrium local density of states, which is proportional to the time-dependent differential conductance measured in scanning tunneling spectroscopy experiments, allowing us to directly image Majorana world lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信