有向图上的WSS过程和Wiener滤波器

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Bagher Iraji;Mohammad Eini;Arash Amini
{"title":"有向图上的WSS过程和Wiener滤波器","authors":"Mohammad Bagher Iraji;Mohammad Eini;Arash Amini","doi":"10.1109/TSP.2024.3510434","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize the concepts of kernels, weak stationarity and white noise from undirected to directed graphs (digraphs) based on the Jordan decomposition of the shift operator. We characterize two types of kernels (type-I and type-II) and their corresponding localization operators for digraphs. We analytically study the interplay of these types of kernels with the concept of stationarity, specially the filtering properties. We also generalize graph Wiener filters and the related optimization framework to digraphs. For the special case of Gaussian processes, we show that the Wiener filtering again coincides with the MAP estimator. We further investigate the linear minimum mean-squared error (LMMSE) estimator for the non-Gaussian cases; the corresponding optimization problem simplifies to a Lyapunov matrix equation. We propose an algorithm to solve the Wiener optimization using proximal splitting methods. Finally, we provide simulation results to verify the provided theory.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1-11"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WSS Processes and Wiener Filters on Digraphs\",\"authors\":\"Mohammad Bagher Iraji;Mohammad Eini;Arash Amini\",\"doi\":\"10.1109/TSP.2024.3510434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize the concepts of kernels, weak stationarity and white noise from undirected to directed graphs (digraphs) based on the Jordan decomposition of the shift operator. We characterize two types of kernels (type-I and type-II) and their corresponding localization operators for digraphs. We analytically study the interplay of these types of kernels with the concept of stationarity, specially the filtering properties. We also generalize graph Wiener filters and the related optimization framework to digraphs. For the special case of Gaussian processes, we show that the Wiener filtering again coincides with the MAP estimator. We further investigate the linear minimum mean-squared error (LMMSE) estimator for the non-Gaussian cases; the corresponding optimization problem simplifies to a Lyapunov matrix equation. We propose an algorithm to solve the Wiener optimization using proximal splitting methods. Finally, we provide simulation results to verify the provided theory.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"1-11\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772649/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772649/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文基于移位算子的Jordan分解,将核、弱平稳性和白噪声的概念从无向图推广到有向图。我们描述了两种类型的核(i型和ii型)及其对应的有向图的定位算子。我们用平稳性的概念分析研究了这些核的相互作用,特别是滤波特性。我们还将图维纳滤波器和相关的优化框架推广到有向图。对于高斯过程的特殊情况,我们证明了维纳滤波再次与MAP估计一致。我们进一步研究了非高斯情况下线性最小均方误差(LMMSE)估计量;将相应的优化问题简化为李雅普诺夫矩阵方程。我们提出了一种用近端分裂方法求解Wiener优化的算法。最后,给出了仿真结果来验证所提供的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WSS Processes and Wiener Filters on Digraphs
In this paper, we generalize the concepts of kernels, weak stationarity and white noise from undirected to directed graphs (digraphs) based on the Jordan decomposition of the shift operator. We characterize two types of kernels (type-I and type-II) and their corresponding localization operators for digraphs. We analytically study the interplay of these types of kernels with the concept of stationarity, specially the filtering properties. We also generalize graph Wiener filters and the related optimization framework to digraphs. For the special case of Gaussian processes, we show that the Wiener filtering again coincides with the MAP estimator. We further investigate the linear minimum mean-squared error (LMMSE) estimator for the non-Gaussian cases; the corresponding optimization problem simplifies to a Lyapunov matrix equation. We propose an algorithm to solve the Wiener optimization using proximal splitting methods. Finally, we provide simulation results to verify the provided theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信