多种CRISPR/Cas13同源物在植物中敲除目标转录物的系统评价

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lu Yu, Jiawei Zou, Amjad Hussain, Ruoyu Jia, Yibo Fan, Jinhang Liu, Xinhui Nie, Xianlong Zhang, Shuangxia Jin
{"title":"多种CRISPR/Cas13同源物在植物中敲除目标转录物的系统评价","authors":"Lu Yu, Jiawei Zou, Amjad Hussain, Ruoyu Jia, Yibo Fan, Jinhang Liu, Xinhui Nie, Xianlong Zhang, Shuangxia Jin","doi":"10.1186/s13059-024-03448-8","DOIUrl":null,"url":null,"abstract":"CRISPR/Cas13 system, recognized for its compact size and specificity in targeting RNA, is currently employed for RNA degradation. However, the potential of various CRISPR/Cas13 subtypes, particularly concerning the knockdown of endogenous transcripts, remains to be comprehensively characterized in plants. Here we present a full spectrum of editing profiles for seven Cas13 orthologs from five distinct subtypes: VI-A (LwaCas13a), VI-B (PbuCas13b), VI-D (RfxCas13d), VI-X (Cas13x.1 and Cas13x.2), and VI-Y (Cas13y.1 and Cas13y.2). A systematic evaluation of the knockdown effects on two endogenous transcripts (GhCLA and GhPGF in cotton) as well as an RNA virus (TMV in tobacco) reveals that RfxCas13d, Cas13x.1, and Cas13x.2 exhibit enhanced stability with editing efficiencies ranging from 58 to 80%, closely followed by Cas13y.1 and Cas13y.2. Notably, both Cas13x.1 and Cas13y.1 can simultaneously degrade two endogenous transcripts through a tRNA-crRNA cassette approach, achieving editing efficiencies of up to 50%. Furthermore, different Cas13 orthologs enable varying degrees of endogenous transcript knockdown with minimal off-target effects, generating germplasms that exhibit a diverse spectrum of mutant phenotypes. Transgenic tobacco plants show significant reductions in damage, along with mild oxidative stress and minimal accumulation of viral particles after TMV infection. In conclusion, our study presents an efficient and reliable platform for transcriptome editing that holds promise for plant functional research and future crop improvement.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"10 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic evaluation of various CRISPR/Cas13 orthologs for knockdown of targeted transcripts in plants\",\"authors\":\"Lu Yu, Jiawei Zou, Amjad Hussain, Ruoyu Jia, Yibo Fan, Jinhang Liu, Xinhui Nie, Xianlong Zhang, Shuangxia Jin\",\"doi\":\"10.1186/s13059-024-03448-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR/Cas13 system, recognized for its compact size and specificity in targeting RNA, is currently employed for RNA degradation. However, the potential of various CRISPR/Cas13 subtypes, particularly concerning the knockdown of endogenous transcripts, remains to be comprehensively characterized in plants. Here we present a full spectrum of editing profiles for seven Cas13 orthologs from five distinct subtypes: VI-A (LwaCas13a), VI-B (PbuCas13b), VI-D (RfxCas13d), VI-X (Cas13x.1 and Cas13x.2), and VI-Y (Cas13y.1 and Cas13y.2). A systematic evaluation of the knockdown effects on two endogenous transcripts (GhCLA and GhPGF in cotton) as well as an RNA virus (TMV in tobacco) reveals that RfxCas13d, Cas13x.1, and Cas13x.2 exhibit enhanced stability with editing efficiencies ranging from 58 to 80%, closely followed by Cas13y.1 and Cas13y.2. Notably, both Cas13x.1 and Cas13y.1 can simultaneously degrade two endogenous transcripts through a tRNA-crRNA cassette approach, achieving editing efficiencies of up to 50%. Furthermore, different Cas13 orthologs enable varying degrees of endogenous transcript knockdown with minimal off-target effects, generating germplasms that exhibit a diverse spectrum of mutant phenotypes. Transgenic tobacco plants show significant reductions in damage, along with mild oxidative stress and minimal accumulation of viral particles after TMV infection. In conclusion, our study presents an efficient and reliable platform for transcriptome editing that holds promise for plant functional research and future crop improvement.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03448-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03448-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR/Cas13系统以其紧凑的尺寸和靶向RNA的特异性而闻名,目前被用于RNA降解。然而,各种CRISPR/Cas13亚型的潜力,特别是关于内源转录物的敲低,仍然需要在植物中得到全面的表征。在这里,我们展示了来自五个不同亚型的七个Cas13同源物的全谱编辑谱:VI-A (LwaCas13a), VI-B (PbuCas13b), VI-D (RfxCas13d), VI-X (Cas13x)。1和Cas13x.2), VI-Y (Cas13y. 2)。1和Cas13y.2)。对两种内源性转录物(棉花中的GhCLA和GhPGF)以及一种RNA病毒(烟草中的TMV)的敲除效果进行了系统评估,结果显示RfxCas13d、Cas13x、cas13d和Cas13x基因的敲除作用与rxcas13d基因的表达有关。1和Cas13x。2表现出增强的稳定性,编辑效率从58%到80%不等,紧随其后的是Cas13y。1和Cas13y.2值得注意的是,这两个Cas13x。1和Cas13y。1可以通过tRNA-crRNA盒式方法同时降解两个内源性转录物,实现高达50%的编辑效率。此外,不同的Cas13同源物能够在最小的脱靶效应下实现不同程度的内源性转录物敲低,从而产生具有多种突变表型的种质。转基因烟草植株在感染TMV后表现出明显的损伤减少,以及轻微的氧化应激和最小的病毒颗粒积累。总之,我们的研究提供了一个高效可靠的转录组编辑平台,为植物功能研究和未来作物改良提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systemic evaluation of various CRISPR/Cas13 orthologs for knockdown of targeted transcripts in plants
CRISPR/Cas13 system, recognized for its compact size and specificity in targeting RNA, is currently employed for RNA degradation. However, the potential of various CRISPR/Cas13 subtypes, particularly concerning the knockdown of endogenous transcripts, remains to be comprehensively characterized in plants. Here we present a full spectrum of editing profiles for seven Cas13 orthologs from five distinct subtypes: VI-A (LwaCas13a), VI-B (PbuCas13b), VI-D (RfxCas13d), VI-X (Cas13x.1 and Cas13x.2), and VI-Y (Cas13y.1 and Cas13y.2). A systematic evaluation of the knockdown effects on two endogenous transcripts (GhCLA and GhPGF in cotton) as well as an RNA virus (TMV in tobacco) reveals that RfxCas13d, Cas13x.1, and Cas13x.2 exhibit enhanced stability with editing efficiencies ranging from 58 to 80%, closely followed by Cas13y.1 and Cas13y.2. Notably, both Cas13x.1 and Cas13y.1 can simultaneously degrade two endogenous transcripts through a tRNA-crRNA cassette approach, achieving editing efficiencies of up to 50%. Furthermore, different Cas13 orthologs enable varying degrees of endogenous transcript knockdown with minimal off-target effects, generating germplasms that exhibit a diverse spectrum of mutant phenotypes. Transgenic tobacco plants show significant reductions in damage, along with mild oxidative stress and minimal accumulation of viral particles after TMV infection. In conclusion, our study presents an efficient and reliable platform for transcriptome editing that holds promise for plant functional research and future crop improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信