具有奇异势项的扩散分数m-拉普拉斯算子的研究

IF 2.5 2区 数学 Q1 MATHEMATICS
Wen-Shuo Yuan, Bin Ge, Yu-Hang Han, Qing-Hai Cao
{"title":"具有奇异势项的扩散分数m-拉普拉斯算子的研究","authors":"Wen-Shuo Yuan, Bin Ge, Yu-Hang Han, Qing-Hai Cao","doi":"10.1007/s13540-024-00360-7","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the questions of well-posedness to fractional <i>m</i>-Laplacian reaction diffusion equation with singular potential term and logarithmic nonlinearity: </p><span>$$\\begin{aligned} \\left| x\\right| ^{-2s}\\partial _t u+(-\\varDelta )_{m}^{s} u+ (-\\varDelta )^{s} \\partial _t u\\!=\\!u|u|^{-2} R(u), \\end{aligned}$$</span><p>where <span>\\(R(u)=\\left| u\\right| ^{r}\\ln (|u|)\\)</span>. Guided by the made assumptions, we arrive at the conclusions of the local and global solvability of solutions within the framework of Galerkin approximation. In addition, this study considers weak solutions’ asymptotic stability and explosion in finite time. Significantly, we not only figure out the relationship between the non-local fractional operator and singular potential term, but generalize and improve earlier results in the literature.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"32 6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the diffusion fractional m-Laplacian with singular potential term\",\"authors\":\"Wen-Shuo Yuan, Bin Ge, Yu-Hang Han, Qing-Hai Cao\",\"doi\":\"10.1007/s13540-024-00360-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the questions of well-posedness to fractional <i>m</i>-Laplacian reaction diffusion equation with singular potential term and logarithmic nonlinearity: </p><span>$$\\\\begin{aligned} \\\\left| x\\\\right| ^{-2s}\\\\partial _t u+(-\\\\varDelta )_{m}^{s} u+ (-\\\\varDelta )^{s} \\\\partial _t u\\\\!=\\\\!u|u|^{-2} R(u), \\\\end{aligned}$$</span><p>where <span>\\\\(R(u)=\\\\left| u\\\\right| ^{r}\\\\ln (|u|)\\\\)</span>. Guided by the made assumptions, we arrive at the conclusions of the local and global solvability of solutions within the framework of Galerkin approximation. In addition, this study considers weak solutions’ asymptotic stability and explosion in finite time. Significantly, we not only figure out the relationship between the non-local fractional operator and singular potential term, but generalize and improve earlier results in the literature.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"32 6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00360-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00360-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有奇异位项和对数非线性的分数阶m-拉普拉斯反应扩散方程的适定性问题:$$\begin{aligned} \left| x\right| ^{-2s}\partial _t u+(-\varDelta )_{m}^{s} u+ (-\varDelta )^{s} \partial _t u\!=\!u|u|^{-2} R(u), \end{aligned}$$其中\(R(u)=\left| u\right| ^{r}\ln (|u|)\)。在这些假设的指导下,我们得到了伽辽金近似框架下解的局部可解性和全局可解性的结论。此外,本文还考虑了弱解的渐近稳定性和有限时间内的爆炸问题。重要的是,我们不仅发现了非局部分数算子与奇异势项之间的关系,而且推广和改进了先前文献中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the diffusion fractional m-Laplacian with singular potential term

This paper addresses the questions of well-posedness to fractional m-Laplacian reaction diffusion equation with singular potential term and logarithmic nonlinearity:

$$\begin{aligned} \left| x\right| ^{-2s}\partial _t u+(-\varDelta )_{m}^{s} u+ (-\varDelta )^{s} \partial _t u\!=\!u|u|^{-2} R(u), \end{aligned}$$

where \(R(u)=\left| u\right| ^{r}\ln (|u|)\). Guided by the made assumptions, we arrive at the conclusions of the local and global solvability of solutions within the framework of Galerkin approximation. In addition, this study considers weak solutions’ asymptotic stability and explosion in finite time. Significantly, we not only figure out the relationship between the non-local fractional operator and singular potential term, but generalize and improve earlier results in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信