随机中心choolesky:核矩阵的实用逼近

IF 3.1 1区 数学 Q1 MATHEMATICS
Yifan Chen, Ethan N. Epperly, Joel A. Tropp, Robert J. Webber
{"title":"随机中心choolesky:核矩阵的实用逼近","authors":"Yifan Chen, Ethan N. Epperly, Joel A. Tropp, Robert J. Webber","doi":"10.1002/cpa.22234","DOIUrl":null,"url":null,"abstract":"The randomly pivoted Cholesky algorithm (<jats:sc>RPCholesky</jats:sc>) computes a factorized rank‐ approximation of an positive‐semidefinite (psd) matrix. <jats:sc>RPCholesky</jats:sc> requires only entry evaluations and additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that <jats:sc>RPCholesky</jats:sc> matches or beats the performance of alternative algorithms. Moreover, <jats:sc>RPCholesky</jats:sc> provably returns low‐rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of <jats:sc>RPCholesky</jats:sc> strongly support its use in scientific computing and machine learning applications.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"27 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations\",\"authors\":\"Yifan Chen, Ethan N. Epperly, Joel A. Tropp, Robert J. Webber\",\"doi\":\"10.1002/cpa.22234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The randomly pivoted Cholesky algorithm (<jats:sc>RPCholesky</jats:sc>) computes a factorized rank‐ approximation of an positive‐semidefinite (psd) matrix. <jats:sc>RPCholesky</jats:sc> requires only entry evaluations and additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that <jats:sc>RPCholesky</jats:sc> matches or beats the performance of alternative algorithms. Moreover, <jats:sc>RPCholesky</jats:sc> provably returns low‐rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of <jats:sc>RPCholesky</jats:sc> strongly support its use in scientific computing and machine learning applications.\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/cpa.22234\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

随机枢轴Cholesky算法(RPCholesky)计算正半定(psd)矩阵的因式秩近似。RPCholesky只需要条目求值和额外的算术运算,并且只需几行代码就可以实现。这种方法对于近似核矩阵特别有用。本文对这一基本算法的经验和理论行为进行了全面的新研究。对于科学机器学习中出现的矩阵近似问题,实验表明RPCholesky匹配或优于其他算法的性能。此外,RPCholesky可证明地返回接近最优的低秩近似。RPCholesky的简单性、有效性和健壮性有力地支持了它在科学计算和机器学习应用程序中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
The randomly pivoted Cholesky algorithm (RPCholesky) computes a factorized rank‐ approximation of an positive‐semidefinite (psd) matrix. RPCholesky requires only entry evaluations and additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that RPCholesky matches or beats the performance of alternative algorithms. Moreover, RPCholesky provably returns low‐rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of RPCholesky strongly support its use in scientific computing and machine learning applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信