在缺少数据的情况下使用逻辑回归开发生物标志物面板。

Ying Huang, Sayan Dasgupta
{"title":"在缺少数据的情况下使用逻辑回归开发生物标志物面板。","authors":"Ying Huang, Sayan Dasgupta","doi":"10.51387/24-nejsds59","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of developing flexible and parsimonious biomarker combinations for cancer early detection in the presence of variable missingness at random. Motivated by the need to develop biomarker panels in a cross-institute pancreatic cyst biomarker validation study, we propose logic-regression based methods for feature selection and construction of logic rules under a multiple imputation framework. We generate ensemble trees for classification decision, and further select a single decision tree for simplicity and interpretability. We demonstrate superior performance of the proposed methods compared to alternative methods based on complete-case data or single imputation. The methods are applied to the pancreatic cyst data to estimate biomarker panels for pancreatic cysts subtype classification and malignant potential prediction.</p>","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"2 1","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611302/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomarker Panel Development Using Logic Regression in the Presence of Missing Data.\",\"authors\":\"Ying Huang, Sayan Dasgupta\",\"doi\":\"10.51387/24-nejsds59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the problem of developing flexible and parsimonious biomarker combinations for cancer early detection in the presence of variable missingness at random. Motivated by the need to develop biomarker panels in a cross-institute pancreatic cyst biomarker validation study, we propose logic-regression based methods for feature selection and construction of logic rules under a multiple imputation framework. We generate ensemble trees for classification decision, and further select a single decision tree for simplicity and interpretability. We demonstrate superior performance of the proposed methods compared to alternative methods based on complete-case data or single imputation. The methods are applied to the pancreatic cyst data to estimate biomarker panels for pancreatic cysts subtype classification and malignant potential prediction.</p>\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"2 1\",\"pages\":\"3-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/24-nejsds59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/24-nejsds59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在随机存在变量缺失的情况下,为癌症早期检测开发灵活和简约的生物标志物组合的问题。基于在跨机构胰腺囊肿生物标志物验证研究中开发生物标志物面板的需要,我们提出了基于逻辑回归的方法,用于在多重输入框架下进行特征选择和逻辑规则构建。我们生成了用于分类决策的集成树,并进一步为简单性和可解释性选择单个决策树。我们证明了所提出的方法与基于完整案例数据或单一输入的替代方法相比具有优越的性能。这些方法应用于胰腺囊肿数据,以估计胰腺囊肿亚型分类和恶性潜能预测的生物标志物面板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomarker Panel Development Using Logic Regression in the Presence of Missing Data.

We consider the problem of developing flexible and parsimonious biomarker combinations for cancer early detection in the presence of variable missingness at random. Motivated by the need to develop biomarker panels in a cross-institute pancreatic cyst biomarker validation study, we propose logic-regression based methods for feature selection and construction of logic rules under a multiple imputation framework. We generate ensemble trees for classification decision, and further select a single decision tree for simplicity and interpretability. We demonstrate superior performance of the proposed methods compared to alternative methods based on complete-case data or single imputation. The methods are applied to the pancreatic cyst data to estimate biomarker panels for pancreatic cysts subtype classification and malignant potential prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信