APP/PS1转基因小鼠的定量蛋白质组学分析。

Jiayuan Wang, Xinyu Wang, Zihui An, Xuan Wang, Yaru Wang, Yuehan Lu, Mengsheng Qiu, Zheqi Liu, Zhou Tan
{"title":"APP/PS1转基因小鼠的定量蛋白质组学分析。","authors":"Jiayuan Wang, Xinyu Wang, Zihui An, Xuan Wang, Yaru Wang, Yuehan Lu, Mengsheng Qiu, Zheqi Liu, Zhou Tan","doi":"10.2174/0115672050345431241113112608","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.</p><p><strong>Objective: </strong>The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.</p><p><strong>Methods: </strong>To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.</p><p><strong>Results: </strong>Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.</p><p><strong>Conclusions: </strong>This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Proteomic Analysis of APP/PS1 Transgenic Mice.\",\"authors\":\"Jiayuan Wang, Xinyu Wang, Zihui An, Xuan Wang, Yaru Wang, Yuehan Lu, Mengsheng Qiu, Zheqi Liu, Zhou Tan\",\"doi\":\"10.2174/0115672050345431241113112608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.</p><p><strong>Objective: </strong>The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.</p><p><strong>Methods: </strong>To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.</p><p><strong>Results: </strong>Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.</p><p><strong>Conclusions: </strong>This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.</p>\",\"PeriodicalId\":94309,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672050345431241113112608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050345431241113112608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:阿尔茨海默病(AD)是一种影响中枢神经系统(CNS)的常见神经退行性疾病,其病因尚不明确。细胞外淀粉样蛋白-β (Aβ)沉积、细胞内由tau蛋白组成的神经原纤维缠结(nft)、胆碱能神经元损伤和其他致病因素的相互作用与AD的进展有关。目的:本研究旨在描述AD小鼠模型海马的蛋白质组学景观改变,利用蛋白质组学分析来识别疾病引起的关键生理和病理变化。这项工作旨在阐明潜在的致病机制,从而促进早期诊断,并为阿尔茨海默病的新治疗干预铺平道路。方法:为了解剖a β和早老素-1 (PS1)在AD发病机制中引起的蛋白质组学扰动,我们对APP/PS1转基因小鼠模型的海马蛋白质组进行了无标记定量(LFQ)蛋白质组学分析。我们采用多种方法,包括差异蛋白功能富集、聚类分析和蛋白相互作用(PPI)网络分析,对APP/PS1转基因小鼠与野生型C57BL/6小鼠进行了全面的蛋白质组学比较研究。结果:质谱分析共鉴定出4817个蛋白,其中2762个蛋白可定量。对比分析发现,APP/PS1组与对照组之间存在396个差异表达蛋白。值得注意的是,35种蛋白质在海马中表现出一致的时间调节趋势,并伴随生物通路和PPI网络的改变。结论:本研究比较了转基因(APP/PS1)和野生型小鼠的蛋白质组学特征,突出了蛋白质组学差异。此外,它绘制了AD小鼠模型在2至12个月发育阶段的蛋白质组学变化轨迹,为疾病相关基因突变的生理和病理意义提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Proteomic Analysis of APP/PS1 Transgenic Mice.

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.

Objective: The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.

Methods: To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.

Results: Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.

Conclusions: This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信